Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cancer ; 23(1): 121, 2024 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-38853277

RESUMO

BACKGROUND: Platinum resistance is the primary cause of poor survival in ovarian cancer (OC) patients. Targeted therapies and biomarkers of chemoresistance are critical for the treatment of OC patients. Our previous studies identified cell surface CD55, a member of the complement regulatory proteins, drives chemoresistance and maintenance of cancer stem cells (CSCs). CSCs are implicated in tumor recurrence and metastasis in multiple cancers. METHODS: Protein localization assays including immunofluorescence and subcellular fractionation were used to identify CD55 at the cell surface and nucleus of cancer cells. Protein half-life determinations were used to compare cell surface and nuclear CD55 stability. CD55 deletion mutants were generated and introduced into cancer cells to identify the nuclear trafficking code, cisplatin sensitivity, and stem cell frequency that were assayed using in vitro and in vivo models. Detection of CD55 binding proteins was analyzed by immunoprecipitation followed by mass spectrometry. Target pathways activated by CD55 were identified by RNA sequencing. RESULTS: CD55 localizes to the nucleus of a subset of OC specimens, ascites from chemoresistant patients, and enriched in chemoresistant OC cells. We determined that nuclear CD55 is glycosylated and derived from the cell surface pool of CD55. Nuclear localization is driven by a trafficking code containing the serine/threonine (S/T) domain of CD55. Nuclear CD55 is necessary for cisplatin resistance, stemness, and cell proliferation in OC cells. CD55 S/T domain is necessary for nuclear entry and inducing chemoresistance to cisplatin in both in vitro and in vivo models. Deletion of the CD55 S/T domain is sufficient to sensitize chemoresistant OC cells to cisplatin. In the nucleus, CD55 binds and attenuates the epigenetic regulator and tumor suppressor ZMYND8 with a parallel increase in H3K27 trimethylation and members of the Polycomb Repressive Complex 2. CONCLUSIONS: For the first time, we show CD55 localizes to the nucleus in OC and promotes CSC and chemoresistance. Our studies identify a therapeutic mechanism for treating platinum resistant ovarian cancer by blocking CD55 nuclear entry.


Assuntos
Antígenos CD55 , Núcleo Celular , Cromatina , Cisplatino , Resistencia a Medicamentos Antineoplásicos , Histonas , Células-Tronco Neoplásicas , Neoplasias Ovarianas , Humanos , Neoplasias Ovarianas/tratamento farmacológico , Neoplasias Ovarianas/metabolismo , Neoplasias Ovarianas/patologia , Neoplasias Ovarianas/genética , Feminino , Cisplatino/farmacologia , Resistencia a Medicamentos Antineoplásicos/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Células-Tronco Neoplásicas/efeitos dos fármacos , Animais , Camundongos , Antígenos CD55/metabolismo , Antígenos CD55/genética , Linhagem Celular Tumoral , Histonas/metabolismo , Núcleo Celular/metabolismo , Cromatina/metabolismo , Metilação , Ensaios Antitumorais Modelo de Xenoenxerto , Antineoplásicos/farmacologia , Transporte Proteico
2.
Pac Symp Biocomput ; 29: 521-533, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38160304

RESUMO

Advances in molecular characterization have reshaped our understanding of low-grade glioma (LGG) subtypes, emphasizing the need for comprehensive classification beyond histology. Lever-aging this, we present a novel approach, network-based Subnetwork Enumeration, and Analysis (nSEA), to identify distinct LGG patient groups based on dysregulated molecular pathways. Using gene expression profiles from 516 patients and a protein-protein interaction network we generated 25 million sub-networks. Through our unsupervised bottom-up approach, we selected 92 subnetworks that categorized LGG patients into five groups. Notably, a new LGG patient group with a lack of mutations in EGFR, NF1, and PTEN emerged as a previously unidentified patient subgroup with unique clinical features and subnetwork states. Validation of the patient groups on an independent dataset demonstrated the robustness of our approach and revealed consistent survival traits across different patient populations. This study offers a comprehensive molecular classification of LGG, providing insights beyond traditional genetic markers. By integrating network analysis with patient clustering, we unveil a previously overlooked patient subgroup with potential implications for prognosis and treatment strategies. Our approach sheds light on the synergistic nature of driver genes and highlights the biological relevance of the identified subnetworks. With broad implications for glioma research, our findings pave the way for further investigations into the mechanistic underpinnings of LGG subtypes and their clinical relevance.Availability: Source code and supplementary data are available at https://github.com/bebeklab/nSEA.


Assuntos
Neoplasias Encefálicas , Glioma , Humanos , Prognóstico , Biologia Computacional , Glioma/genética , Glioma/patologia , Algoritmos , Mapas de Interação de Proteínas , Neoplasias Encefálicas/genética , Neoplasias Encefálicas/patologia
3.
Neuro Oncol ; 26(8): 1388-1401, 2024 Aug 05.
Artigo em Inglês | MEDLINE | ID: mdl-38456228

RESUMO

BACKGROUND: Hypoxia is associated with poor prognosis in many cancers including glioblastoma (GBM). Glioma stem-like cells (GSCs) often reside in hypoxic regions and serve as reservoirs for disease progression. Long non-coding RNAs (lncRNAs) have been implicated in GBM. However, the lncRNAs that modulate GSC adaptations to hypoxia are poorly understood. Identification of these lncRNAs may provide new therapeutic strategies to target GSCs under hypoxia. METHODS: lncRNAs induced by hypoxia in GSCs were identified by RNA-seq. Lung cancer-associated transcript-1 (LUCAT1) expression was assessed by qPCR, RNA-seq, Northern blot, single molecule FISH in GSCs, and interrogated in IvyGAP, The Cancer Genome Atlas, and CGGA databases. LUCAT1 was depleted by shRNA, CRISPR/Cas9, and CRISPR/Cas13d. RNA-seq, Western blot, immunohistochemistry, co-IP, ChIP, ChIP-seq, RNA immunoprecipitation, and proximity ligation assay were performed to investigate mechanisms of action of LUCAT1. GSC viability, limiting dilution assay, and tumorigenic potential in orthotopic GBM xenograft models were performed to assess the functional consequences of depleting LUCAT1. RESULTS: A new isoform of Lucat1 is induced by Hypoxia inducible factor 1 alpha (HIF1α) and Nuclear factor erythroid 2-related factor 2 (NRF2) in GSCs under hypoxia. LUCAT1 is highly expressed in hypoxic regions in GBM. Mechanistically, LUCAT1 formed a complex with HIF1α and its co-activator CBP to regulate HIF1α target gene expression and GSC adaptation to hypoxia. Depletion of LUCAT1 impaired GSC self-renewal. Silencing LUCAT1 decreased tumor growth and prolonged mouse survival in GBM xenograft models. CONCLUSIONS: A HIF1α-LUCAT1 axis forms a positive feedback loop to amplify HIF1α signaling in GSCs under hypoxia. LUCAT1 promotes GSC self-renewal and GBM tumor growth. LUCAT1 is a potential therapeutic target in GBM.


Assuntos
Neoplasias Encefálicas , Regulação Neoplásica da Expressão Gênica , Glioblastoma , Subunidade alfa do Fator 1 Induzível por Hipóxia , RNA Longo não Codificante , Humanos , RNA Longo não Codificante/genética , Glioblastoma/metabolismo , Glioblastoma/patologia , Glioblastoma/genética , Animais , Camundongos , Subunidade alfa do Fator 1 Induzível por Hipóxia/metabolismo , Subunidade alfa do Fator 1 Induzível por Hipóxia/genética , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patologia , Neoplasias Encefálicas/genética , Células-Tronco Neoplásicas/metabolismo , Células-Tronco Neoplásicas/patologia , Progressão da Doença , Ensaios Antitumorais Modelo de Xenoenxerto , Proliferação de Células , Células Tumorais Cultivadas , Camundongos Nus , Linhagem Celular Tumoral , Biomarcadores Tumorais/metabolismo , Biomarcadores Tumorais/genética , Prognóstico , Apoptose
4.
Neuro Oncol ; 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38656347

RESUMO

BACKGROUND: Single session stereotactic radiosurgery (SRS) or surgical resection alone for brain metastases larger than 2 cm results in unsatisfactory local control. We conducted a phase I trial for brain metastases(>2cm) to determine the safety of preoperative SRS at escalating doses. METHODS: Radiosurgery dose was escalated at 3 Gy increments for 3 cohorts based on maximum tumor dimension starting at: 18 Gy for >2-3 cm, 15 Gy for >3-4 cm, and 12 Gy for >4-6 cm. Dose limiting toxicity (DLT) was defined as grade III or greater acute toxicity. RESULTS: A total of 35 patients/36 lesions were enrolled. For tumor size >2-3 cm, patients were enrolled up to the second dose level (21 Gy); for >3-4 cm and >4-6 cm cohorts the third dose level (21 Gy and 18 Gy, respectively) was reached. There were 2 DLTs in the >3-4 cm arm at 21Gy. The maximum tolerated dose (MTD) of SRS for >2-3 cm was not reached; and was 18 Gy for both >3-4 cm arm and >4-6 cm arm. With a median follow-up of 64.0 months, the 6- and 12-month local control rates were 85.9% and 76.6%, respectively. One patient developed grade 3 radiation necrosis at 5 months. The 2-year rate of leptomeningeal disease (LMD) was 0%. CONCLUSION: Preoperative SRS with dose escalation followed by surgical resection for brain metastases greater than 2 cm in size demonstrates acceptable acute toxicity. The phase II portion of the trial will be conducted at the maximum tolerated SRS doses.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA