Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biochemistry ; 60(24): 1885-1895, 2021 06 22.
Artigo em Inglês | MEDLINE | ID: mdl-34081430

RESUMO

NMR spectroscopy was used to investigate the phenomenon of ribosome-amplified metabolism or RAMBO between pyruvate kinase and ribosomes. Because the concentration of ribosomes increases as the cell grows, ribosome binding interactions may regulate metabolic fluxes by altering the distribution of bound and free enzymes. Pyruvate kinase (PK) catalyzes the last step of glycolysis and represents a major drug target for controlling bacterial infections. The binding of metabolic enzymes to ribosomes creates protein quinary structures with altered catalytic activities. NMR spectroscopy and chemical cross-linking combined with high-resolution mass spectrometry were used to establish that PK binds to ribosome at three independent sites, the L1 stalk, the A site, and the mRNA entry pore. The bioanalytical methodology described characterizes the altered kinetics and confirms the specificity of pyruvate kinase-ribosome interaction, affording an opportunity to investigate the ribosome dependence of metabolic reactions under solution conditions that closely mimic the cytosol. Expanding on the concept of ribosomal heterogeneity, which describes variations in ribosomal constituents that contribute to the specificity of cellular processes, this work firmly establishes the reciprocal process by which ribosome-dependent quinary interactions affect metabolic activity.


Assuntos
Piruvato Quinase/metabolismo , Ribossomos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Geobacillus stearothermophilus/metabolismo , Glicólise/fisiologia , Cinética , Espectroscopia de Ressonância Magnética/métodos , Ligação Proteica/fisiologia , RNA Mensageiro/metabolismo , Proteínas Ribossômicas/metabolismo
2.
J Phys Chem B ; 128(29): 7002-7021, 2024 Jul 25.
Artigo em Inglês | MEDLINE | ID: mdl-39012038

RESUMO

Ribosomes bind to many metabolic enzymes and change their activity. A general mechanism for ribosome-mediated amplification of metabolic enzyme activity, RAMBO, was formulated and elucidated for the glycolytic enzyme triosephosphate isomerase, TPI. The RAMBO effect results from a ribosome-dependent electric field-substrate dipole interaction energy that can increase or decrease the ground state of the reactant and product to regulate catalytic rates. NMR spectroscopy was used to determine the interaction surface of TPI binding to ribosomes and to measure the corresponding kinetic rates in the absence and presence of intact ribosome particles. Chemical cross-linking and mass spectrometry revealed potential ribosomal protein binding partners of TPI. Structural results and related changes in TPI energetics and activity show that the interaction between TPI and ribosomal protein L11 mediate the RAMBO effect.


Assuntos
Ribossomos , Triose-Fosfato Isomerase , Triose-Fosfato Isomerase/metabolismo , Triose-Fosfato Isomerase/química , Ribossomos/metabolismo , Ribossomos/química , Proteínas Ribossômicas/metabolismo , Proteínas Ribossômicas/química , Cinética , Eletricidade , Ligação Proteica
3.
J Ethnopharmacol ; 301: 115820, 2023 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-36220511

RESUMO

ETHNOPHARMACOLOGICAL RELEVANCE: Compound Yangshe granule is a characteristic Chinese preparation against cervical cancer used at Fudan University Shanghai Cancer Center, and it consists of Hedyotis Diffusae Herba, Solani Lyrati Herba, Rubiae Radix et Rhizoma, Echinopsis Radix, Angelicae Sinensis Radix, Codonopsis Radix and Atractylodis Macrocephalae Rhizoma. AIM OF THE STUDY: The objective of the current study was to investigate the preclinical efficacy of compound Yangshe granule against cervical cancer and elucidate the underlying mechanisms. MATERIALS AND METHODS: Antitumor effect of the preparation was investigated in U14 cells in vitro and subcutaneous xenograft mice in vivo. The underlying mechanisms were investigated by through network pharmacological analysis and identified by in vitro study. The components of compound Yangshe granule were collected from the Traditional Chinese Medicine Systems Pharmacology database, and the corresponding targets were predicted by the SwissTargetPrediction database. The targets involved in cervical cancer were collected from the GeneCards, Online Mendelian Inheritance in Man and DrugBank databases. A protein‒protein interaction network was constructed by using the String platform. The drug-disease-target network was plotted by Cytoscape software. Kyoto Encyclopedia of Genes and Genomes and Gene Ontology enrichment analyses were performed to investigate hub targets. RESULTS: After treatment with 0.5-10 mg/mL compound Yangshe granule, the survival rates of U14 cells gradually declined to 53.32% for 24 h, 23.62% for 48 h, and 12.81% for 72 h. The apoptosis rates of U14 cells gradually increased to 15.52% for 24 h, 23.87% for 48 h, and 65.01% for 72 h after treatment with 2-10 mg/mL compound Yangshe granule. After oral administration of compound Yangshe granule by xenograft mice, the tumor inhibition rates reached 52.27%, 74.62%, and 82.70% in the low, middle, and high dose groups, respectively. According to the network pharmacological analysis, quercetin, luteolin and naringenin were the most bioactive ingredients of the preparation. Kyoto Encyclopedia of Genes and Genomes pathway analysis showed that compound Yangshe granule may combat cervical cancer through the PI3K/AKT pathway. CONCLUSION: In summary, network pharmacology combined with biological experiments demonstrated that the main bioactive components including quercetin, luteolin and naringenin could inhibit the tumor growth by regulating the PI3K/AKT pathway and Bcl-2 family. Thus, compound Yangshe granule may be a promising adjuvant therapy for cervical cancer.


Assuntos
Medicamentos de Ervas Chinesas , Neoplasias do Colo do Útero , Feminino , Humanos , Camundongos , Animais , Fosfatidilinositol 3-Quinases , Proteínas Proto-Oncogênicas c-akt , Medicamentos de Ervas Chinesas/farmacologia , Medicamentos de Ervas Chinesas/uso terapêutico , Quercetina/farmacologia , Luteolina/farmacologia , Farmacologia em Rede , Transdução de Sinais , China , Medicina Tradicional Chinesa , Neoplasias do Colo do Útero/tratamento farmacológico , Simulação de Acoplamento Molecular
4.
Sci Rep ; 12(1): 22293, 2022 12 24.
Artigo em Inglês | MEDLINE | ID: mdl-36566335

RESUMO

Analytical tools to study cell physiology are critical for optimizing drug-host interactions. Real time pulse chase NMR spectroscopy, RTPC-NMR, was introduced to monitor the kinetics of metabolite production in HEK 293T cells treated with COVID-19 vaccine-like lipid nanoparticles, LNPs, with and without mRNA. Kinetic flux parameters were resolved for the incorporation of isotopic label into metabolites and clearance of labeled metabolites from the cells. Changes in the characteristic times for alanine production implicated mitochondrial dysfunction as a consequence of treating the cells with lipid nanoparticles, LNPs. Mitochondrial dysfunction was largely abated by inclusion of mRNA in the LNPs, the presence of which increased the size and uniformity of the LNPs. The methodology is applicable to all cultured cells.


Assuntos
COVID-19 , Nanopartículas , Humanos , Células HEK293 , Lipídeos/química , RNA Mensageiro/genética , Vacinas contra COVID-19 , Lipossomos , Espectroscopia de Ressonância Magnética , Nanopartículas/química , Mitocôndrias/genética , RNA Interferente Pequeno/genética
5.
PLoS One ; 15(4): e0232015, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-32330166

RESUMO

Transient, site-specific, or so-called quinary, interactions are omnipresent in live cells and modulate protein stability and activity. Quinary intreactions are readily detected by in-cell NMR spectroscopy as severe broadening of the NMR signals. Intact ribosome particles were shown to be necessary for the interactions that give rise to the NMR protein signal broadening observed in cell lysates and sufficient to mimic quinary interactions present in the crowded cytosol. Recovery of target protein NMR spectra that were broadened in lysates, in vitro and in the presence of purified ribosomes was achieved by RNase A digestion only after the structure of the ribosome was destabilized by removing magnesium ions from the system. Identifying intact ribosomal particles as the major protein-binding component of quinary interactions and consequent spectral peak broadening will facilitate quantitative characterization of macromolecular crowding effects in live cells and streamline models of metabolic activity.


Assuntos
Conformação Proteica , Proteínas/metabolismo , Ribossomos/metabolismo , Escherichia coli/metabolismo , Proteínas de Escherichia coli/metabolismo , Magnésio/metabolismo , Espectroscopia de Ressonância Magnética/métodos , Ressonância Magnética Nuclear Biomolecular/métodos , Ligação Proteica/fisiologia , Estabilidade Proteica , Ribonuclease Pancreático/metabolismo
6.
Adv Sci (Weinh) ; 5(9): 1800672, 2018 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-30250804

RESUMO

Highly multiplexed detection of proteins secreted by single cells is always challenging. Herein, a multiplexed in situ tagging technique based on single-stranded DNA encoded microbead arrays and multicolor successive imaging for assaying single-cell secreted proteins with high throughput and high sensitivity is presented. This technology is demonstrated to be capable of increasing the multiplexity exponentially. Upon integration with polydimethylsiloxane microwells, this platform is applied to detect ten immune effector proteins from differentiated single macrophages stimulated with lipopolysaccharide. Significant heterogeneity is observed when the derived human primary macrophages are analyzed. This versatile technology is expected to open new opportunities in systems biology, immune regulation studies, signaling analysis, and molecular diagnostics.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA