Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Appl Opt ; 62(5): 1428-1435, 2023 Feb 10.
Artigo em Inglês | MEDLINE | ID: mdl-36821248

RESUMO

The hyperspectral full polarization imaging system (HFPIS) based on spatial modulation and liquid crystal tunable filter (LCTF) can modulate the polarization information of the target into the interferogram by means of interference imaging. It has the advantage of rapid imaging of the hyperspectral full polarization information from the target, and has good real time imaging and practicality. Through the spectroscopic imaging mode of a Savart prism, the corresponding interference optical path and imaging system are designed, including a beam expander, spatial modulator, LCTF, focusing system, and imaging sensor. This system can extract the different information from the target and demodulate it so as to obtain the hyperspectral polarization image. The experiment shows that the HFPIS can reveal the texture, contour, and other details of the target in the fog, and has obvious advantages over the traditional intensity imaging methods.

2.
J Environ Sci (China) ; 96: 138-150, 2020 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-32819688

RESUMO

Speciated characterization of Volatile Organic Compounds (VOCs), including oxygenated VOCs (OVOCs), from construction machinery and river ships in China is currently lacking. In this regard, we conducted field measurement on speciated VOC (including OVOC) emissions from six construction machinery and five river ships in the Pearl River Delta (PRD) region to identify VOC emission characteristics. We noticed that OVOC emissions from construction machinery and ships accounted for more than 50% of the total VOC emissions, followed by alkenes, aromatics and alkanes. Formaldehyde and acetaldehyde were the most emission species, accounting for 61.8%-83.2% of OVOCs. For construction machinery, the fuel-based emission factors of roller, grader and pile driver were 3.12, 3.12 and 7.36 g/kg, respectively. With the rigorous restraint by the national emission standards, VOC emissions of construction machinery had decreased considerably, especially during stage Ⅲ. Ozone formation potential was also significantly reduced due to the significant decrease in emissions of OVOCs and alkenes with higher reactivity. For river ships, the fuel-based emission factors of cargo ships and speedboat were 1.46 and 0.44 g/kg, respectively. VOC emissions from construction machinery and river ships in Guangdong Province in 2017 were 8851.0 and 4361.0 ton, respectively. This study filled the knowledge gaps of reactive gas emissions from different kinds of non-road mobile sources over the PRD, and more importantly, highlighted the necessity in adding OVOC measurement to give a complete and accurate depiction of reactive gas emissions from non-road mobile sources.


Assuntos
Poluentes Atmosféricos/análise , Ozônio/análise , Compostos Orgânicos Voláteis/análise , China , Monitoramento Ambiental , Rios , Navios , Emissões de Veículos/análise
3.
J Glob Antimicrob Resist ; 36: 365-370, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38280721

RESUMO

IncX4 plasmids are one of the most epidemiologically successful vehicles for mcr-1 spread. Here we found that the IncX4 plasmids carried two different replication proteins encoded by genes pir-1 and pir-2, respectively, but mcr-1 was only carried by IncX4 plasmid encoding pir-1. The copy number of pir-2 encoding plasmids (3.15 ± 0.9 copies) are higher than that of pir-1 encoding plasmids (0.85 ± 0.5 copies). When mcr-1 was cloned into IncX4 plasmid encoding pir-2, the higher copy number of these plasmids resulted in increased expression of mcr-1 and a greater fitness burden on their host cells. However, these plasmids exhibited a lower rate of invasion into the bacterial population compared with mcr-1-positive plasmids encoding the pir-1 gene. These findings collectively explain the absence of mcr-1 in all IncX4 plasmids encoding pir-2. Our results further confirmed that low-copy numbers are important for the spread of mcr-1 plasmid from the perspective of natural evolution.


Assuntos
Antibacterianos , Proteínas de Escherichia coli , Antibacterianos/farmacologia , Colistina/farmacologia , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Plasmídeos/genética
4.
mBio ; 13(1): e0320921, 2022 02 22.
Artigo em Inglês | MEDLINE | ID: mdl-35089067

RESUMO

The emergence of the plasmid-borne colistin resistance gene mcr-1 threatens public health. IncX4-type plasmids are one of the most epidemiologically successful vehicles for spreading mcr-1 worldwide. Since MCR-1 is known for imposing a fitness cost to its host bacterium, the successful spread of mcr-1-bearing plasmids might be linked to high conjugation frequency, which would enhance the maintenance of the plasmid in the host without antibiotic selection. However, the mechanism of IncX4 plasmid conjugation remains unclear. In this study, we used high-density transposon mutagenesis to identify factors required for IncX4 plasmid transfer. Eighteen essential transfer genes were identified, including five with annotations unrelated to conjugation. Cappable-seq, transcriptome sequencing (RNA-seq), electrophoretic mobility shift assay, and ß-galactosidase assay confirmed that a novel transcriptional regulator gene, pixR, directly regulates the transfer of IncX4 plasmids by binding the promoter of 13 essential transfer genes to increase their transcription. PixR is not active under nonmating conditions, while the expression of the pixR, pilX3-4, and pilX11 genes increased 3- to 6-fold upon contact with recipient Escherichia coli C600. Plasmid invasion and coculture competition assays revealed the essentiality of pixR for spreading and persistence of mcr-1-bearing IncX4 plasmids in bacterial populations. Effective conjugation is crucial for alleviating the fitness cost exerted by mcr-1 carriage. The existence of the IncX4-specific pixR gene increases plasmid transmissibility while promoting the invasion and persistence of mcr-1-bearing plasmids in bacterial populations, which helps explain their global prevalence. IMPORTANCE The spread of clinically relevant antibiotic resistance genes is often linked to the dissemination of epidemic plasmids. However, the underlying molecular mechanisms contributing to the successful spread of epidemic plasmids remain unclear. In this report, we shine a light on the transfer activation of IncX4 plasmids. We show how conjugation promotes the invasion and persistence of IncX4 plasmids within a bacterial population. The dissection of the regulatory network of conjugation helps explain the rapid spread of epidemic plasmids in nature. It also reveals potential targets for the development of conjugation inhibitors.


Assuntos
Proteínas de Escherichia coli , Escherichia coli , Escherichia coli/genética , Proteínas de Escherichia coli/genética , Farmacorresistência Bacteriana/genética , Antibacterianos/farmacologia , Colistina/farmacologia , Plasmídeos , Testes de Sensibilidade Microbiana
5.
Infect Drug Resist ; 15: 7227-7234, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36533252

RESUMO

Purpose: The objective of this study was to elucidate the characteristics and mechanism of formation of the fusion plasmid pHNSHP24 carrying mcr-1.1. Materials and Methods: mcr-1.1-bearing Escherichia coli SHP24 and the corresponding transconjugant were subjected to whole-genome sequencing (WGS) combining the Illumina and MinION platforms to obtain the complete sequences of the fusion plasmid and its original plasmids. Results: Complete sequence analysis and S1 nuclease-pulsed field gel electrophoresis (S1-PFGE) results indicated that E. coli SHP24 carried four plasmids: mcr-1.1-harboring phage-like plasmid pHNSHP24-3, F53:A-:B- plasmid pHNSHP24-4, pHNSHP24-1, and pHNSHP24-2. However, the plasmid pHNSHP24 carrying mcr-1.1 presents in the transconjugant differed from the four plasmids in the donor strain SHP24. Further analysis showed that pHNSHP24 may be the fusion product of pHNSHP24-3 and pHNSHP24-4 and is formed through a replicative transposition mechanism mediated by IS26 in E. coli SHP24. Conclusion: This study is the first to report the fusion of an mcr-1.1-harboring phage-like pO111 plasmid and an F53:A-:B- plasmid mediated by IS26. Our findings revealed the role of phage-like and fusion plasmids in the dissemination of mcr-1.1.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA