Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Chem Chem Phys ; 16(24): 12560-6, 2014 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-24831955

RESUMO

H2 or CO pretreatment had been processed on the Ag/γ-Al2O3 catalyst which significantly enhanced its NH3-SCR activity. The main purpose of this study was to prove that the impacts of pretreatment on silver species caused the enhancement. XRD, UV-vis, XPS, in situ FTIR and NO-TPD results showed the relationship between pretreatment, Ag species, NOX adsorption and NOX conversion. Extra nitrates were adsorbed on the Ag clusters which were produced by the pretreatment, thereby enhancing the activity. The reactivities between NO and NH3 had been studied. The difference between CO-pretreatment and H2-pretreatment had also been discussed. Furthermore, the durability and stability of the pretreated sample were tested. Therefore, a modified Ag2O/Al2O3 catalyst for NH3-SCR was researched.

2.
RSC Adv ; 13(37): 25989-26000, 2023 Aug 29.
Artigo em Inglês | MEDLINE | ID: mdl-37664208

RESUMO

The copper-cerium binary oxide catalysts supported by titanium dioxide with nanosphere core-shell structures, nanotube (TNT) core-shell structures, impregnation (imp) nanoparticles and sol-gel nanoparticles were prepared for NH3-SCR of NOx under medium-low temperature conditions. The effect of different morphologies on the Cu-Ce/TiO2 catalysts was comprehensively studied through physicochemical characterization. The results showed that the sol-gel nanoparticles exhibited 100% NOx reduction efficiency in the temperature range of 180-400 °C. Compared with the other catalysts, the sol-gel nanoparticle catalyst had the highest dispersion and lowest crystallinity, indicating that morphology played an important role in the NH3-SCR of the catalyst. The in situ DRIFTS study on the sol-gel nanoparticle catalyst shows that cerium could promote Cu2+ to produce abundant Lewis acid sites, which would significantly increase the adsorption reaction of ammonia on the catalyst surface, thereby promoting the occurrence of the Eley-Rideal (E-R) mechanism. With the Ce-Ti interaction on the atomic scale, the Ce-O-Ti structure enhanced the redox properties at a medium temperature. In addition, cerium oxide enhances the strong interaction between the catalyst matrix and CuO particles. Therefore, the reducibility of the CuO species was enhanced.

3.
J Hazard Mater ; 300: 598-606, 2015 Dec 30.
Artigo em Inglês | MEDLINE | ID: mdl-26259165

RESUMO

In this paper, an enhanced visible-light photocatalytic oxidation (PCO) of NO (∼ 400 ppm) in the presence of the graphitic carbon nitride (g-C3N4) treated by the alkaline hydrothermal treatment is evaluated. Various g-C3N4 samples were treated in different concentrations of NaOH solutions and the sample treated in 0.12 mol L(-1) of NaOH solution possesses the largest BET specific surface area as well as the optimal ability of the PCO of NO. UV-vis diffuse reflection spectra (DRS) and photoluminescence (PL) spectra were also conducted, and the highly improved photocatalytic performance is ascribed to the large specific surface area and high pore volume, which provides more adsorption and active sites, the wide visible-light adsorption edge and the narrow band gap, which is favorable for visible-light activation, as well as the decreased recombination rate of photo-generated electrons and holes, which could contribute to the production of active species. Fluorescence spectra and a trapping experiment were conducted to further the mechanism analysis of the PCO of NO, illustrating that superoxide radicals (O2(-)) play the dominant role among active species in the PCO of NO.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA