Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 32
Filtrar
1.
Environ Sci Technol ; 58(19): 8432-8443, 2024 May 14.
Artigo em Inglês | MEDLINE | ID: mdl-38699990

RESUMO

Sea salt (ss) aerosols in PM2.5 are often quantified through source apportionment by applying sodium (Na+) and chloride (Cl-) as the markers, but both markers can be substantially emitted from anthropogenic sources. In this study, we differentiate ss from nonss (nss) portions of Na+ and Cl- to better apportion PM2.5 in a coastal tropical urban environment. Size-resolved ionic profiles accounting for Cl- depletion of aged ss were applied to 162-day measurements during 2012 and 2018-2019. Results show that the nss (likely anthropogenic) portions, on average, account for 50-80% of total Na+ and Cl- in submicron aerosols (PM1). This corresponds to up to 2.5 µg/m3 of ss in submicron aerosols that can be ∼10 times overestimated if one attributes all Na+ and Cl- in PM1 to ss. Employing the newly speciated ss- and nss-portions of Na+ and Cl- to source apportionment of urban PM2.5 via positive matrix factorization uncovers a new source of transported anthropogenic emissions during the southwest monsoon, contributing to 12-15% of PM2.5. This increases anthropogenic PM2.5 by ≥19% and reduces ss-related PM2.5 by >30%. In addition to demonstrating Cl- depletion (aging) in submicron aerosols and quantifying ssNa+, nssNa+, ssCl-, as well as nssCl- therein, the refined PM2.5 apportionment resolves new insights on PM2.5 of anthropogenic origins in urban environments, useful to facilitate policy making.


Assuntos
Aerossóis , Poluentes Atmosféricos , Cidades , Monitoramento Ambiental , Material Particulado , Monitoramento Ambiental/métodos , Poluentes Atmosféricos/análise
2.
Proc Natl Acad Sci U S A ; 115(49): 12419-12424, 2018 12 04.
Artigo em Inglês | MEDLINE | ID: mdl-30455288

RESUMO

In response to a strong El Niño, fires in Indonesia during September and October 2015 released a large amount of carbon dioxide and created a massive regional smoke cloud that severely degraded air quality in many urban centers across Southeast Asia. Although several lines of evidence indicate that peat burning was a dominant contributor to emissions in the region, El Niño-induced drought is also known to increase deforestation fires and agricultural waste burning in plantations. As a result, uncertainties remain with respect to partitioning emissions among different ecosystem and fire types. Here we measured the radiocarbon content (14C) of carbonaceous aerosol samples collected in Singapore from September 2014 through October 2015, with the aim of identifying the age and origin of fire-emitted fine particulate matter (particulate matter with an aerodynamic diameter less than or equal to 2.5 µm). The Δ14C of fire-emitted aerosol was -76 ± 51‰, corresponding to a carbon pool of combusted organic matter with a mean turnover time of 800 ± 420 y. Our observations indicated that smoke plumes reaching Singapore originated primarily from peat burning (∼85%), and not from deforestation fires or waste burning. Atmospheric transport modeling confirmed that fires in Sumatra and Borneo were dominant contributors to elevated PM2.5 in Singapore during the fire season. The mean age of the carbonaceous aerosol, which predates the Industrial Revolution, highlights the importance of improving peatland fire management during future El Niño events for meeting climate mitigation and air quality commitments.

3.
Ecotoxicol Environ Saf ; 208: 111702, 2021 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-33396033

RESUMO

Cellular models exhibiting human physiological features of pseudostratified columnar epithelia, provide a more realistic approach for elucidating detailed mechanisms underlying PM2.5-induced pulmonary toxicity. In this study, we characterized the barrier and mucociliary functions of differentiated human small airway epithelial cells (SAECs), cultured at the air-liquid interface (ALI). Due to the presence of mucociliary protection, particle internalization was reduced, with a concomitant decrease in cytotoxicity in differentiated S-ALI cells, as compared to conventional submerged SAEC cultures. After 24-hour exposure to PM2.5 surrogates, 117 up-regulated genes and 156 down-regulated genes were detected in S-ALI cells, through transcriptomic analysis using the Affymetrix Clariom™ S Human Array. Transcription-level changes in >60 signaling pathways, were revealed by functional annotation of the 273 differentially expressed genes, using the PANTHER Gene List Analysis. These pathways are involved in multiple cellular processes, that include inflammation and apoptosis. Exposure to urban PM2.5 led to complex responses in airway epithelia, including a net induction of downstream pro-inflammatory and pro-apoptotic responses. Collectively, this study highlights the importance of using the more advanced ALI model rather than the undifferentiated submerged model, to avoid over-assessment of inhaled particle toxicity in human. The results of our study also suggest that reduction of ambient PM2.5 concentrations would have a protective effect on respiratory health in humans.


Assuntos
Poluentes Atmosféricos/toxicidade , Células Epiteliais/efeitos dos fármacos , Material Particulado/toxicidade , Transcriptoma/efeitos dos fármacos , Poluentes Atmosféricos/química , Apoptose/efeitos dos fármacos , Células Cultivadas , Células Epiteliais/metabolismo , Células Epiteliais/patologia , Perfilação da Expressão Gênica , Humanos , Tamanho da Partícula , Material Particulado/química , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética
4.
Ecotoxicol Environ Saf ; 202: 110932, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32800216

RESUMO

Adverse health effects arising from exposure to fine particulates have become a major concern. Angiogenesis is a vital physiological process for the growth and development of cells and structures in the human body, whereby excessive or insufficient vessel growth could contribute to pathogenesis of diseases. We therefore evaluated indirect effects of carbon black (CB) and inhalable airborne particles on the angiogenic ability of unexposed Human Umbilical Vein Endothelial Cells (HUVECs) by co-culturing HUVECs with pre-exposed Small Airway Epithelial Cells (SAECs). As endothelial cells are major components of blood vessels and potential targets of fine particles, we investigated if lung epithelial cells exposed to ambient PM2.5 surrogates could induce bystander effects on neighboring unexposed endothelial cells in an alveolar-capillary co-culture lung model. Epithelial exposure to CB at a non-toxic dose of 25 µg/mL reduced endothelial tube formation and cell adhesion in co-cultured HUVECs, and decreased expression of angiogenic genes in SAECs. Similarly, exposure of differentiated SAECs to PM2.5 surrogates reduced cell reproductive ability, adhesion and tube formation of neighboring HUVECs. This indicates epithelial exposure to CB and urban PM2.5 surrogates both compromised the angiogenic ability of endothelial cells through bystander effects, thereby potentially perturbing the ventilation-perfusion ratio and affecting lung function.


Assuntos
Poluentes Atmosféricos/toxicidade , Material Particulado/toxicidade , Testes de Toxicidade , Técnicas de Cocultura , Células Epiteliais , Células Endoteliais da Veia Umbilical Humana/citologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Pulmão/metabolismo , Neovascularização Patológica , Fuligem
5.
Sci Total Environ ; 941: 173145, 2024 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-38768732

RESUMO

The COVID-19 pandemic has given a chance for researchers and policymakers all over the world to study the impact of lockdowns on air quality in each country. This review aims to investigate the impact of the restriction of activities during the lockdowns in the Asian Monsoon region on the main criteria air pollutants. The various types of lockdowns implemented in each country were based on the severity of the COVID-19 pandemic. The concentrations of major air pollutants, especially particulate matter (PM) and nitrogen dioxide (NO2), reduced significantly in all countries, especially in South Asia (India and Bangladesh), during periods of full lockdown. There were also indications of a significant reduction of sulfur dioxide (SO2) and carbon monoxide (CO). At the same time, there were indications of increasing trends in surface ozone (O3), presumably due to nonlinear chemistry associated with the reduction of oxides of nitrogens (NOX). The reduction in the concentration of air pollutants can also be seen in satellite images. The results of aerosol optical depth (AOD) values followed the PM concentrations in many cities. A significant reduction of NO2 was recorded by satellite images in almost all cities in the Asian Monsoon region. The major reductions in air pollutants were associated with reductions in mobility. Pakistan, Bangladesh, Myanmar, Vietnam, and Taiwan had comparatively positive gross domestic product growth indices in comparison to other Asian Monsoon nations during the COVID-19 pandemic. A positive outcome suggests that the economy of these nations, particularly in terms of industrial activity, persisted during the COVID-19 pandemic. Overall, the lockdowns implemented during COVID-19 suggest that air quality in the Asian Monsoon region can be improved by the reduction of emissions, especially those due to mobility as an indicator of traffic in major cities.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , COVID-19 , Material Particulado , COVID-19/epidemiologia , Poluição do Ar/estatística & dados numéricos , Poluentes Atmosféricos/análise , Material Particulado/análise , Monitoramento Ambiental , Ásia/epidemiologia , Dióxido de Nitrogênio/análise , Humanos , Ozônio/análise , Pandemias , Dióxido de Enxofre/análise , SARS-CoV-2 , Bangladesh/epidemiologia , Índia/epidemiologia
6.
J Nanosci Nanotechnol ; 13(7): 4981-9, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23901520

RESUMO

Phosphorus-doped (P-doped) TiO2 catalysts with a stable anatase-brookite biphase structure were successfully synthesized by integrating ultrasonication with phosphorus doping and Pluronic P123 surfactant. The synthesized catalysts were characterized using X-ray diffraction, transmission electron microscopy, nitrogen adsorption-desorption, Fourier transform infrared, and UV-visible diffuse reflectance spectra. Ultrasonication facilitates the appearance of brookite phase. Phosphorus doping was demonstrated an effective strategy to stabilize the anatase-brookite biphase structure and inhibits undesirable grain growth. Triblock copolymer Pluronic P123 used in the reaction facilitates the formation of catalyst particles with mesoporous structure and large surface area and prevents particles from agglomeration. The low band-gap of brookite phase enables the synthesized P-doped TiO2 catalysts outperform commercial P25 TiO2 and N-doped TiO2 in the degradation of methylene blue under both solar light and visible light irradiation.


Assuntos
Nanoestruturas/química , Nanoestruturas/ultraestrutura , Fósforo/química , Titânio/química , Catálise , Luz , Teste de Materiais , Nanoestruturas/efeitos da radiação , Tamanho da Partícula , Transição de Fase , Fósforo/efeitos da radiação , Titânio/efeitos da radiação
7.
Biomarkers ; 17(8): 750-7, 2012 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-23030236

RESUMO

CONTEXT: Increased use of engineered nanoparticles may result in exposure of workers and consumers, making them a health concern. OBJECTIVE: To identify potential blood miRNA biomarkers after intravenous gold nanoparticle (AuNP) exposure. MATERIALS AND METHODS: miRNA microarray analysis was carried out on blood of rats at 1 week and 2 months after injection. RESULTS: Many up- and downregulated miRNAs were detected. Of these, rno-miR-298 was confirmed to be increased at 1 week postinjection by reverse transcription-PCR (RT-PCR). DISCUSSION AND CONCLUSION: Blood miRNAs could be useful as biomarkers for exposure to nanoparticles. miR-298 regulates ß-amyloid (Aß) precursor protein-converting enzyme-1 (BACE1) in Alzheimer's disease.


Assuntos
Biomarcadores/sangue , Ouro/química , Nanopartículas Metálicas/administração & dosagem , MicroRNAs/sangue , Animais , Perfilação da Expressão Gênica , Regulação da Expressão Gênica/efeitos dos fármacos , Injeções Intravenosas , Nanopartículas Metálicas/química , MicroRNAs/genética , Análise de Sequência com Séries de Oligonucleotídeos , Ratos , Reação em Cadeia da Polimerase Via Transcriptase Reversa , Fatores de Tempo
8.
Artigo em Inglês | MEDLINE | ID: mdl-35805388

RESUMO

Despite extensive research on air pollution estimation/prediction, inter-country models for estimating air pollutant concentrations in Southeast Asia have not yet been fully developed and validated owing to the lack of air quality (AQ), emission inventory and meteorological data from different countries in the region. The purpose of this study is to develop and evaluate two machine learning (ML)-based models (i.e., analysis of covariance (ANCOVA) and random forest regression (RFR)) for estimating daily PM2.5 and PM10 concentrations in Brunei Darussalam. These models were first derived from past AQ and meteorological measurements in Singapore and then tested with AQ and meteorological data from Brunei Darussalam. The results show that the ANCOVA model (R2 = 0.94 and RMSE = 0.05 µg/m3 for PM2.5, and R2 = 0.72 and RMSE = 0.09 µg/m3 for PM10) could describe daily PM concentrations over 18 µg/m3 in Brunei Darussalam much better than the RFR model (R2 = 0.92 and RMSE = 0.04 µg/m3 for PM2.5, and R2 = 0.86 and RMSE = 0.08 µg/m3 for PM10). In conclusion, the derived models provide a satisfactory estimation of PM concentrations for both countries despite some limitations. This study shows the potential of the models for inter-country PM estimations in Southeast Asia.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Aprendizado de Máquina , Modelos Estatísticos , Material Particulado/análise
9.
Environ Pollut ; 275: 116626, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33609858

RESUMO

This study characterizes the impacts of transported peat-forest (PF) burning smoke on an urban environment and evaluates associated source burning conditions based on carbon properties of PM2.5 at the receptor site. We developed and validated a three-step classification that enables systematic and more rapid identification of PF smoke impacts on a tropical urban environment with diverse emissions and complex atmospheric processes. This approach was used to characterize over 300 daily PM2.5 data collected during 2011-2013, 2015 and 2019 in Singapore. A levoglucosan concentration of ≥0.1 µg/m3 criterion indicates dominant impacts of transported PF smoke on urban fine aerosols. This approach can be used in other ambient environments for practical and location-dependent applications. Organic carbon (OC) concentrations (as OC indicator) can be an alternate to levoglucosan for assessing smoke impacts on urban environments. Applying the OC concentration indicator identifies smoke impacts on ∼80% of daily samples in 2019 and shows an accuracy of 51-86% for hourly evaluation. Following the systematic identification of urban PM2.5 predominantly affected by PF smoke in 2011-2013, 2015 and 2019, we assessed the concentration ratio of char-EC/soot-EC as an indicator of smoldering- or flaming-dominated burning emissions. When under the influence of transported PF smoke, the mean concentration ratio of char-EC to soot-EC in urban PM2.5 decreased by >70% from 8.2 in 2011 to 2.3 in 2015 but increased to 3.8 in 2019 (p < 0.05). The reversed trend with a 65% increase from 2015 to 2019 shows stronger smoldering relative to flaming, indicating a higher level of soil moisture at smoke origins, possibly associated with rewetting and revegetating peatlands since 2016.


Assuntos
Poluentes Atmosféricos , Fumaça , Aerossóis/análise , Poluentes Atmosféricos/análise , Biomassa , Carbono/análise , Monitoramento Ambiental , Florestas , Material Particulado/análise , Estações do Ano , Singapura , Fumaça/análise , Solo
10.
Sci Total Environ ; 716: 137027, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32044485

RESUMO

Exposure to fine particulate matter (PM2.5) is associated with cardiovascular disease risk. To date, there are few studies on short-term PM2.5 exposure in different microenvironments and its impact on immediate health effects, particularly in the Southeast Asia region. This study assessed PM2.5 concentrations in different microenvironments in a densely populated city in the tropics using low-cost personal PM2.5 sensors as well as their associations with acute cardiovascular health outcomes. A total of 49 adult participants affiliated with the National University of Singapore (NUS) community were recruited. Personal low-cost sensors were used to measure PM2.5 concentrations between September 2017 and March 2019. Demographic information and time-activity patterns were collected using questionnaires. Wilcoxon pairwise comparisons were used to determine statistical differences between PM2.5 exposures at 18 different microenvironments. Generalized Estimating Equations (GEE) models were used to assess the association between PM2.5 exposure and blood pressure as well as heart rate. All models were adjusted for age, sex, body mass index, physical activity, temperature, duration of exposure, and baseline cardiovascular parameters. Significant differences in PM2.5 concentrations were observed across different microenvironments. Air-conditioned offices and tertiary teaching spaces had the lowest (median = 13.1 µg/m3) and hawker centres had the highest (median = 32.0 µg/m3) PM2.5 concentrations. Significant positive associations between PM2.5 exposure and heart rate (ß = 0.40, p = 4.6 × 10-5) as well as diastolic blood pressure (ß = 0.16, p = 0.0077) were also observed. Short-term exposure to PM2.5 was significantly associated with higher heart rate and blood pressure. Further work is needed to investigate the variations within each type of microenvironment and expand the study to other sub-populations such as the elderly and children.


Assuntos
Poluição do Ar , Doenças Cardiovasculares , Adulto , Poluentes Atmosféricos , Cidades , Exposição Ambiental , Humanos , Material Particulado
11.
J Environ Monit ; 11(9): 1614-21, 2009 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-19724830

RESUMO

This study characterizes the size distribution and composition of metals in diesel exhaust particulates (DEPs) emitting from four driving conditions. We quantified 17 metals in DEPs (34-1000 nm) with a total concentration ranging from 5.4-7.0 microg/m(3). Depending on driving conditions, ultrafine (<100 nm) and accumulation-mode DEPs carried up to 41% and 75% of the quantified metals, respectively. The size distribution of individual metals consistently indicates that under a medium (60%) engine load, more than three fourths of quantified metals partitioned in accumulation-mode DEPs, indicating prominent heterogeneous condensation. Enhancing the engine load up to 100% significantly increased metals in ultrafine DEPs around 1.8 times, particularly in DEP < 66 nm, suggesting enhanced metal nucleation. Under the maximum engine load, metals and elemental carbon showed an opposite trend in size distribution, providing tailpipe evidence that metals may catalyze oxidation of DEPs during combustion. Among the identified metals, Fe (2.3-3.9 microg/m(3)) was most abundant contributing to more than 43% of quantified metals, followed by Li, V, and Pb. Although As and Cd together contributed to less than 2% of the total quantified metals in DEP (<1 microm), their concentrations peaked in ultrafine DEPs under the maximum engine load, indicating that a decrease in engine loads can reduce amounts and toxicity of ultrafine DEPs.


Assuntos
Poluentes Atmosféricos/análise , Metais/análise , Material Particulado/análise , Emissões de Veículos/análise , Atmosfera/química , Monitoramento Ambiental , Tamanho da Partícula
12.
Environ Pollut ; 244: 477-485, 2019 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-30366295

RESUMO

In this study, we carried out high time-resolution measurements of particle number concentration and size distribution (5-1000 nm) in Singapore, which represents a tropical urban environment. The measurements were taken during the southwest monsoon season in 2017 using a fast-response differential mobility spectrometer at a sampling rate of 1 Hz. In the measurement, short-lived nucleation events were found prominent at early afternoon because of the abundant incoming radiation that enhances the photochemical reactions in atmosphere. For the first time in the region, a five-factor positive matrix factorization approach was applied to the size spectra data. Based on particle number concentration, two sources within nucleation mode (<30 nm) were resolved and account for 43% of total number concentration, which is higher than the available monitoring data in other big cities. Among the sources, O3-related atmospheric photochemical reactions with peak size at 10-12 nm is a unique factor and prominent in early afternoon nucleation events. The findings of this work can serve as a baseline for assessing influence of local and cross-border airborne emissions during various seasons in the future.


Assuntos
Poluentes Atmosféricos/análise , Poluição do Ar/análise , Monitoramento Ambiental/métodos , Material Particulado/análise , Emissões de Veículos/análise , Atmosfera/análise , Poeira/análise , Humanos , Tamanho da Partícula , Estações do Ano , Singapura , Clima Tropical
13.
J Vis Exp ; (151)2019 09 19.
Artigo em Inglês | MEDLINE | ID: mdl-31609321

RESUMO

Zinc oxide nanoparticles (ZnO NPs) have a wide range of applications, but the number of reports on ZnO NP-associated toxicity has grown rapidly in recent years. However, studies that elucidate the underlying mechanisms for ZnO NP-induced toxicity are scanty. We determined the toxicity profiles of ZnO NPs using both in vitro and in vivo experimental models. A significant decrease in cell viability was observed in ZnO NP-exposed MRC5 lung fibroblasts, showing that ZnO NPs exert cytotoxic effects. Similarly, interestingly, gut exposed to ZnO NPs exhibited a dramatic increase in reactive oxygen species levels (ROS) in the fruit fly Drosophila. More in-depth studies are required to establish a risk assessment for the increased usage of ZnO NPs by consumers.


Assuntos
Pulmão/efeitos dos fármacos , Pulmão/metabolismo , Nanopartículas Metálicas/toxicidade , Nanopartículas/toxicidade , Espécies Reativas de Oxigênio/metabolismo , Óxido de Zinco/toxicidade , Animais , Técnicas de Cultura de Células , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Sobrevivência Celular/fisiologia , Drosophila melanogaster , Fibroblastos/efeitos dos fármacos , Fibroblastos/patologia , Humanos , Pulmão/patologia , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/fisiologia
14.
Nanotoxicology ; 13(4): 429-446, 2019 05.
Artigo em Inglês | MEDLINE | ID: mdl-30451554

RESUMO

Nanomaterials (NMs) are widely used in consumer and industrial products, as well as in the field of nanomedicine. Despite their wide array of applications, NMs are regarded as foreign entities by the body and thus induce various immune reactions. In mammals, NMs trigger differential recognition by immune cells such as macrophages, causing perturbation of the immune system. Studies on the pattern recognition of NMs have revealed that the Toll-like receptor signaling pathway plays an essential role in NM-induced innate immunity. However, effects caused by physicochemical properties of NMs on immune response and how NMs are recognized by immune cells are not fully understood. Furthermore, the complexity of the mammalian immune system and interspecies variation are still being debated, and the discordant results warrant the need to address these issues. Drosophila melanogaster has gained popularity as a model to study nanotoxicity. Drosophila innate immunity has extensively been studied, providing insights into our understanding of key signaling cascades involved, and importantly it has conserved immune-related genes and mechanogenetic pathways that represents a useful basis for studying its biological response at molecular level to environmental contaminants such as NMs. Moreover, various genetic tools and reagents enable to elucidate the molecular mechanisms underlying the internalization of NMs by immune cells. Furthermore, numerous forward and reverse genetic approaches can be employed to dissect complex biological processes, such as identifying signal transduction pathways and their core components involved in NM-induced immune responses. This review presents an overview of Drosophila innate immunity, as well as summarizes the impact of NM exposure on immune response in Drosophila. We also highlight the recent advancement of suitable methodologies and tools regarding the use of Drosophila as a model for studying the immune-related toxicity of NMs, taking into account the limitations associated with studying NM-induced toxicity in the mammalian system.


Assuntos
Drosophila melanogaster/efeitos dos fármacos , Imunidade Inata/efeitos dos fármacos , Nanoestruturas/toxicidade , Animais , Proteínas de Drosophila/genética , Proteínas de Drosophila/metabolismo , Drosophila melanogaster/genética , Drosophila melanogaster/imunologia , Imunidade Inata/genética , Transdução de Sinais
15.
Environ Pollut ; 248: 496-505, 2019 May.
Artigo em Inglês | MEDLINE | ID: mdl-30831346

RESUMO

This study characterizes impacts of peat-forest (PF) smoke on an urban environment through carbonaceous profiles of >260 daily PM2.5 samples collected during 2012, 2013 and 2015. Organic carbon (OC) and elemental carbon (EC) comprising eight carbonaceous fractions are examined for four sample groups - non-smoke-dominant (NSD), smoke-dominant (SD), episodic PM2.5 samples at the urban receptor, and near-source samples collected close to PF burning sites. PF smoke introduced much larger amounts of OC than EC, with OC accounting for up to 94% of total carbon (TC), or increasing by up to 20 times in receptor PM2.5. SD PM2.5 at the receptor site and near-source samples have OC3 and EC1 as the dominant fractions. Both sample classes also exhibit char-EC >1.4 times of soot-EC, characterizing smoldering-dominant PF smoke, unlike episodic PM2.5 at the receptor site featuring large amounts of pyrolyzed organic carbon (POC) and soot-EC. Relative to the mean NSD PM2.5 at the receptor, increasing strength of transboundary PF smoke enriches OC3 and OC4 fractions, on average, by factors of >3 for SD samples, and >14 for episodic samples. A peat-forest smoke (PFS) indicator, representing the concentration ratio of (OC2+OC3+POC) to soot-EC, shows a temporal trend satisfactorily correlating with an organic marker (levoglucosan) of biomass burning. The PFS indicator systematically differentiates influences of PF smoke from source to urban receptor sites, with a progressive mean of 3.6, 13.4 and 20.1 for NSD, SD and episodic samples respectively at the receptor site, and 54.7 for the near-source PM2.5. A PFS indicator of ≥5.0 is proposed to determine dominant influence of transboundary PF smoke on receptor urban PM2.5 in the equatorial Asia with ∼90% confidence. Assessing >2900 hourly OCEC data in 2017-2018 supports the applicability of the PFS indicator to evaluate hourly impacts of PF smoke on receptor urban PM2.5 in the Maritime Continent.


Assuntos
Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Monitoramento Ambiental/métodos , Material Particulado/efeitos adversos , Material Particulado/análise , Fumaça/efeitos adversos , Fumaça/análise , Aerossóis/efeitos adversos , Aerossóis/análise , Ásia , Biomassa , Carbono/efeitos adversos , Carbono/análise , Florestas , Estações do Ano , Solo , Fuligem/efeitos adversos , Fuligem/análise , Saúde da População Urbana , Incêndios Florestais
16.
Water Res ; 42(13): 3480-8, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18519147

RESUMO

In this study, photo/photocatalytic oxidation of common analgesic and antipyretic drug, paracetamol (acetaminophen), was investigated to determine the optimal operating conditions for degradation in water. UVA (365 nm) radiation alone degraded negligible amount of paracetamol, whereas paracetamol concentration decreased substantially under an irradiation of UVC (254 nm) with marginal changes in total organic carbon (TOC). In the presence of TiO2, much faster photodegradation of paracetamol and effective mineralization occurred; more than 95% of 2.0mM paracetamol was degraded within 80 min. The degradation rate constant decreased with an increase in the initial concentration of paracetamol, while it increased with light intensity and oxygen concentration. The degradation rate also increased with TiO2 loading until a concentration of 0.8 g L(-1). The degradation rate slowly increased between pH 3.5 and 9.5, but significantly decreased with increasing pH between 9.5 and 11.0. Based on the experimental data, a kinetic equation describing paracetamol photocatalytic degradation with various process parameters is obtained.


Assuntos
Acetaminofen/química , Titânio/química , Catálise , Concentração de Íons de Hidrogênio , Estrutura Molecular , Oxigênio/química , Fotoquímica , Soluções
17.
J Air Waste Manag Assoc ; 58(8): 1077-85, 2008 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-18720657

RESUMO

Four driving conditions were examined to characterize how speeds and loads of a medium-duty diesel engine affect resultant diesel exhaust particulates (DEPs) in terms of number concentrations (< or =400 nm), size distribution, persistent free radicals, elemental carbon (EC), and organic carbon (OC). At the medium engine load (60%), DEPs surged in number concentrations at around 40-70 nm, whereas DEPs from the full engine load (100%) showed a distinctive bimodal distribution with a large population of 30-50 nm and 100-400 nm. Under the full engine load, engine speeds insignificantly affected resultant DEP number concentrations. When the engine load decreased from 100% to the medium level (60%), DEPs of ultrafine size and 100-400 nm decreased at least 1.4 times (from 5.6 x 10(8) to 4 x 10(8) #/cm3) and more than 3 times (from 2.7 x 10(8) to 0.8 x 10(8) #/cm3), respectively. The same reduction in the engine load significantly decreased persistent free radicals in DEPs up to approximately 30 times (from 123 x 10(16) to 4 x 10(16) #spin/g). Decreasing the engine load from 100 to 60% also concurrently reduced both EC and OC in total DEPs around 2 times, from 27.3 to 13.9 mg/m3, and from 17.6 to 9.2 mg/m3, respectively. For DEPs smaller than 1 microm, under the full engine load, EC and OC consistently peaked at 170-330 nm under an engine speed of 1800 rpm or 94-170 nm under an engine speed of 3000 rpm, reflecting processes of nucleation, cluster-cluster agglomeration, and condensation. Decreasing the engine load from 100 to 60% reduced EC and OC in DEPs (smaller than 1 microm) at least 3 times (0.6 to 0.2 mg/m3) and 2 times (0.4 to 0.2 mg/m3), respectively. Taken together, decreasing the full engine load to a medium (60%) level effectively reduced the number concentrations (< or =400 nm), persistent free radicals, EC, and OC of total DEPs, as well as the concentration of EC and OC in ultrafine and accumulation-mode DEPs.


Assuntos
Poluentes Ocupacionais do Ar/análise , Material Particulado/análise , Emissões de Veículos/análise , Carbono/análise , Monitoramento Ambiental , Radicais Livres , Tamanho da Partícula
18.
Sci Total Environ ; 619-620: 528-544, 2018 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-29156272

RESUMO

This work reports the first ground-based atmospheric measurements of 26 halocarbons in Singapore, an urban-industrial city-state in Southeast (SE) Asia. A total of 166 whole air canister samples collected during two intensive 7 Southeast Asian Studies (7SEAS) campaigns (August-October 2011 and 2012) were analyzed for C1-C2 halocarbons using gas chromatography-electron capture/mass spectrometric detection. The halocarbon dataset was supplemented with measurements of selected non-methane hydrocarbons (NMHCs), C1-C5 alkyl nitrates, sulfur gases and carbon monoxide to better understand sources and atmospheric processes. The median observed atmospheric mixing ratios of CFCs, halons, CCl4 and CH3CCl3 were close to global tropospheric background levels, with enhancements in the 1-17% range. This provided the first measurement evidence from SE Asia of the effectiveness of Montreal Protocol and related national-scale regulations instituted in the 1990s to phase-out ozone depleting substances (ODS). First- and second-generation CFC replacements (HCFCs and HFCs) dominated the atmospheric halocarbon burden with HFC-134a, HCFC-22 and HCFC-141b exhibiting enhancements of 39-67%. By combining near-source measurements in Indonesia with receptor data in Singapore, regionally transported peat-forest burning smoke was found to impact levels of several NMHCs (ethane, ethyne, benzene, and propane) and short-lived halocarbons (CH3I, CH3Cl, and CH3Br) in a subset of the receptor samples. The strong signatures of these species near peat-forest fires were potentially affected by atmospheric dilution/mixing during transport and by mixing with substantial urban/regional backgrounds at the receptor. Quantitative source apportionment was carried out using positive matrix factorization (PMF), which identified industrial emissions related to refrigeration, foam blowing, and solvent use in chemical, pharmaceutical and electronics industries as the major source of halocarbons (34%) in Singapore. This was followed by marine and terrestrial biogenic activity (28%), residual levels of ODS from pre-Montreal Protocol operations (16%), seasonal incidences of peat-forest smoke (13%), and fumigation related to quarantine and pre-shipment (QPS) applications (7%).

19.
Curr Med Chem ; 25(12): 1409-1419, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-28393698

RESUMO

BACKGROUND: As nanomaterials possess attractive physicochemical properties, immense research efforts have been channeled towards their development for biological and biomedical applications. In particular, zinc nanomaterials (nZnOs) have shown great potential for use in in the medical and pharmaceutical fields, and as tools for novel antimicrobial treatment, thereby capitalizing on their unique antimicrobial effects. METHODS: We conducted a literature search using databases to retrieve the relevant articles related to the synthesis, properties and current applications of nZnOs in the diagnosis and treatment of diseases. A total of 86 publications were selected for inclusion in this review. RESULTS: Besides studies on the properties and the methodology for the synthesis of nZnOs, many studies have focused on the application of nZnOs as delivery agents, biosensors and antimicrobial agents, as well as in bioimaging. CONCLUSION: This review gives an overview of the current development of nZnOs for their potential use as theranostic agents. However, more comprehensive studies are needed to better assess the valuable contributions and the safety of nZnOs in nanomedicine.


Assuntos
Nanomedicina/métodos , Nanoestruturas/uso terapêutico , Óxido de Zinco/uso terapêutico , Animais , Humanos , Nanoestruturas/química , Óxido de Zinco/síntese química , Óxido de Zinco/química
20.
Sci Rep ; 7: 43298, 2017 02 27.
Artigo em Inglês | MEDLINE | ID: mdl-28240300

RESUMO

Consecutive eight study phases under the successive presence and absence of UV irradiation, water vapor, and oxygen were conducted to characterize surface changes in the photocatalytic TiO2 powder using near-ambient-pressure X-ray photoelectron spectroscopy (XPS). Both Ti 2p and O 1s spectra show hysteresis through the experimental course. Under all the study environments, the bridging hydroxyl (OHbr) and terminal hydroxyl (OHt) are identified at 1.1-1.3 eV and 2.1-2.3 eV above lattice oxygen, respectively. This enables novel and complementary approach to characterize reactivity of TiO2 powder. The dynamic behavior of surface-bound water molecules under each study environment is identified, while maintaining a constant distance of 1.3 eV from the position of water vapor. In the dark, the continual supply of both water vapor and oxygen is the key factor retaining the activated state of the TiO2 powder for a time period. Two new surface peaks at 1.7-1.8 and 4.0-4.2 eV above lattice oxygen are designated as peroxides (OOH/H2O2) and H2O2 dissolved in water, respectively. The persistent peroxides on the powder further explain previously observed prolonged oxidation capability of TiO2 powder without light irradiation.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA