Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Am Chem Soc ; 146(28): 19137-19145, 2024 Jul 17.
Artigo em Inglês | MEDLINE | ID: mdl-38953468

RESUMO

Anthracenylidene is an intriguing structural unit with potential in various fields. The study presents a novel approach to introducing axial chirality into this all-carbon core skeleton through a remotely controlled desymmetrization strategy. A palladium-catalyzed enantioselective Heck arylation of exocyclic double bond of anthracene with two distinct substituents at the C10 position is harnessed to realize such a transformation. The judicious identification of the P-centrally chiral ligand is pivotal to ensure the competitive competence in reactivity and stereocontrol when the heteroatom handle is absent from the anthracenylidene skeleton. Both C10 mono- and disubstituted substrates were compatible for the established catalytic system, and structurally diverse anthracenylidene-based frameworks were forged with good-to-high enantiocontrol. The subsequent derivatization of the obtained products yielded a valuable array of centrally and axially chiral molecules, thus emphasizing the practicality of this chemistry. DFT calculations shed light on the catalytic mechanism and provided insights into the origin of the experimentally observed enantioselectivity for this reaction.

2.
J Am Chem Soc ; 146(13): 9444-9454, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38513075

RESUMO

The 3d transition metal-catalyzed enantioconvergent radical cross-coupling provides a powerful tool for chiral molecule synthesis. In the classic mechanism, the bond formation relies on the interaction between nucleophile-sequestered metal complexes and radicals, limiting the nucleophile scope to sterically uncongested ones. The coupling of sterically congested nucleophiles poses a significant challenge due to difficulties in transmetalation, restricting the reaction generality. Here, we describe a probable outer-sphere nucleophilic attack mechanism that circumvents the challenging transmetalation associated with sterically congested nucleophiles. This strategy enables a general copper-catalyzed enantioconvergent radical N-alkylation of aromatic amines with secondary/tertiary alkyl halides and exhibits catalyst-controlled stereoselectivity. It accommodates diverse aromatic amines, especially bulky secondary and primary ones to deliver value-added chiral amines (>110 examples). It is expected to inspire the coupling of more nucleophiles, particularly challenging sterically congested ones, and accelerate reaction generality.

3.
Angew Chem Int Ed Engl ; : e202412179, 2024 Jul 11.
Artigo em Inglês | MEDLINE | ID: mdl-38990010

RESUMO

Here, we report a strategy enabling triple switchable chemo-, regio-, and stereodivergence in newly developed palladium-catalyzed cycloadditions of allenes. An asymmetric pseudo-stereodivergent cycloaddition of allenes bearing a primary leaving group at the α-position, where a dynamic kinetic asymmetric hydroalkoxylation of racemic unactivated allenes was the enantio-determining step, is realized, providing four stereoisomers [(Z,R), (Z,S), (E,S), and (E,R)] containing a di-substituted alkene scaffold and a stereogenic center. By tuning reaction conditions, a mechanistically distinctive cycloaddition is uncovered selectively with the same set of substrates. By switching the position of the leaving group of allenes, a cycloaddition involving an intermolecular O-attack is disclosed. Diverse mechanisms of the cycloaddition reactions of allenes enable rapid access to structurally and stereochemically diverse 3,4-dihydro-2H-1,4-benzoxazines in high efficiency and selectivity.

4.
Angew Chem Int Ed Engl ; 63(29): e202400143, 2024 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-38698663

RESUMO

The chemistry of quinone methides formed in situ has been flourishing in recent years. In sharp contrast, the development and utilization of biphenyl quinone methides are rare. In this study, we achieved a remote stereocontrolled 1,12-conjugate addition of biphenyl quinone methides formed in situ for the first time. In the presence of a suitable chiral phosphoric acid, alkynyl biphenyl quinone methides were generated from α-[4-(4-hydroxyphenyl)phenyl]propargyl alcohols, followed by enantioselective 1,12-conjugate addition with indole-2-carboxylates. The strategy enabled the alcohols to serve as efficient allenylation reagents, providing practical access to a broad range of axially chiral allenes bearing a (1,1'-biphenyl)-4-ol unit, which were previously less accessible. Combined with control experiments, density functional theory calculations shed light on the reaction mechanism, indicating that enantioselectivity originates from the nucleophilic addition of alkynyl biphenyl quinone methides. Notably, not only the presence of biphenyl quinone methides as versatile intermediates was confirmed but also organocatalytic enantioselective 1,12-addition was established.

5.
J Am Chem Soc ; 145(26): 14562-14569, 2023 Jul 05.
Artigo em Inglês | MEDLINE | ID: mdl-37344408

RESUMO

Catalytic enantioselective construction of optically active tetraarylmethanes remains a challenging issue in the field of asymmetric synthesis because of the overwhelming steric hindrance and formidable stereocontrol that existed in construction of the all-aryl-substituted quaternary carbon stereocenter. Here, we reported an organocatalytic asymmetric synthesis of chiral tetraarylmethanes from racemic tertiary alcohols. With the aid of a chiral phosphoric acid catalyst, 6-methylenenaphthalen-2(6H)-ones were generated in situ from 6-(hydroxydiarylmethyl)naphthalen-2-ols, followed by stereoselective 1,8-conjugate addition to afford the corresponding tetraarylmethanes in high to excellent yields with high enantioselectivities. Furthermore, the scope of tertiary alcohols has been successfully enlarged to 6-(hydroxydiphenylmethyl)naphthalen-2-amines. Notably, it is the first time to use 2-naphthol/naphthalen-2-amine unit as the auxiliary group to in situ generate α,ß,γ,δ,ε,ζ-conjugate systems, which have been successfully involved in organocatalytic remote stereocontrolled 1,8-conjugate addition reactions. Particularly, organocatalytic stereoconvergent formal nucleophilic substitution reaction of triarylmethanols has been achieved for the asymmetric construction of chiral tetraarylmethanes. In addition, DFT calculations have been applied to provide guidance for the design of additional tertiary alcohols and understand the origin of stereoselectivity.

6.
J Am Chem Soc ; 145(37): 20646-20654, 2023 Sep 20.
Artigo em Inglês | MEDLINE | ID: mdl-37695885

RESUMO

Chiral organosilanes are valuable chemical entities in the development of functional organic materials, asymmetric catalysis, and medicinal chemistry. As an important strategy for constructing chiral organosilanes, the asymmetric functionalization of the Si-CAryl bond typically relies on transition-metal catalysis. Herein, we present an efficient method for atroposelective synthesis of biaryl siloxane atropisomers via organocatalytic Si-C bond functionalization of dinaphthosiloles with silanol nucleophiles. The reaction proceeds through an asymmetric protonation and simultaneous Si-C bond cleavage/silanolysis sequence in the presence of a newly developed chiral Brønsted acid catalyst. The versatile nature of the Si-C bond streamlines the derivatization of axially chiral products into other functional atropisomers, thereby expanding the applicability of this method.

7.
J Am Chem Soc ; 145(50): 27788-27799, 2023 Dec 20.
Artigo em Inglês | MEDLINE | ID: mdl-37987648

RESUMO

Poly(disulfide)s are an emerging class of sulfur-containing polymers with applications in medicine, energy, and functional materials. However, the constituent dynamic covalent S-S bond is highly reactive in the presence of the sulfide (RS-) anion, imposing a persistent challenge to control the polymerization. Here, we report an anion-binding approach to arrest the high reactivity of the RS- chain end to control the synthesis of linear poly(disulfide)s, realizing a rapid, living ring-opening polymerization of 1,2-dithiolanes with narrow dispersity and high regioselectivity (Mw/Mn ∼ 1.1, Ps ∼ 0.85). Mechanistic studies support the formation of a thiourea-base-sulfide ternary complex as the catalytically active species during the chain propagation. Theoretical analyses reveal a synergistic catalytic model where the catalyst preorganizes the protonated base and anionic chain end to establish spatial confinement over the bound monomer, effecting the observed regioselectivity. The catalytic system is amenable to monomers with various functional groups, and semicrystalline polymers are also obtained from lipoic acid derivatives by enhancing the regioselectivity.

8.
Angew Chem Int Ed Engl ; 62(7): e202216534, 2023 Feb 06.
Artigo em Inglês | MEDLINE | ID: mdl-36536515

RESUMO

Diaryl ethers are widespread in biologically active compounds, ligands and catalysts. It is known that the diaryl ether skeleton may exhibit atropisomerism when both aryl rings are unsymmetrically substituted with bulky groups. Despite recent advances, only very few catalytic asymmetric methods have been developed to construct such axially chiral compounds. We describe herein a dynamic kinetic resolution approach to axially chiral diaryl ethers via a Brønsted acid catalyzed atroposelective transfer hydrogenation (ATH) reaction of dicarbaldehydes with anilines. The desired diaryl ethers could be obtained in moderate to good chemical yields (up to 79 %) and high enantioselectivities (up to 95 % ee) under standard reaction conditions. Such structural motifs are interesting precursors for further transformations and may have potential applications in the synthesis of chiral ligands or catalysts.

9.
Angew Chem Int Ed Engl ; 62(21): e202300844, 2023 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-36942762

RESUMO

Herein we report a Pd-catalyzed asymmetric allenylic alkylation strategy for the direct functionalization of 1H-indoles by employing P-chiral BIBOP-type ligands. The regioselectivity (N1/C3) of this process can be switched efficiently. Using Cs2 CO3 at elevated temperatures in MeCN, N1-alkylated indoles bearing axial chirality with a stereocenter non-adjacent (ß) to the nitrogen are produced in good yields with high enantioselectivity and complete N1-regioselectivity regardless of the electronic properties and substitution patterns of diverse indoles. Using K2 CO3 at room temperature in CH2 Cl2 , chiral C3-alkylated indoles can also be obtained. Notably, we introduce a new class of tri-substituted allenylic electrophiles that proceeded through different pathways from di-substituted allenylic electrophiles.

10.
J Am Chem Soc ; 144(39): 17763-17768, 2022 10 05.
Artigo em Inglês | MEDLINE | ID: mdl-36166275

RESUMO

Due to their low reactivity, difficult enantiocontrol, and proneness to N-O bond cleavage, the catalytic asymmetric hydrogenation of oximes to hydroxylamines has remained a significant challenge. Herein, a Lewis and Brønsted acid cooperation strategy was established for the asymmetric hydrogenation of oximes, providing the corresponding hydroxylamines with up to 95% yield and up to 96% ee. Addition of Lewis and Brønsted acid was crucial to obtain high conversion and enantioselectivity. Mechanistic investigations indicates that the thiourea fragment of the ligand, Lewis acid (In(OTf)3 or Zn(OAc)2), as well as the Brønsted acid (l-CSA) played vital roles in the control of reactivity and enantioselectivity of the reaction. In addition, the synthetic elaboration of this transformation was demonstrated by gram scale experiment with retention of the yield and enantioselectivity.


Assuntos
Ácidos de Lewis , Oximas , Hidrogenação , Ligantes , Estereoisomerismo , Tioureia
11.
Angew Chem Int Ed Engl ; 61(3): e202112993, 2022 01 17.
Artigo em Inglês | MEDLINE | ID: mdl-34626073

RESUMO

The mechanistic uniqueness and versatility of borrowing hydrogen catalysis provides an opportunity to investigate the controllability of a cascade reaction, and more importantly, to realize either one or both of chiral recognition and chiral induction simultaneously. Here we report that, in a borrowing hydrogen cascade starting from racemic allylic alcohols, one of the enantiomers could be kinetically resolved, while the other enantiomer could be purposely converted to various targeted products, including α,ß-unsaturated ketones, ß-functionalized ketones and γ-functionalized alcohols. By employing a robust Ru-catalyst, both kinetic resolution and asymmetric induction were achieved with remarkable levels of efficiency and enantioselectivity. Density functional theory (DFT) calculations suggest that corresponding catalyst-substrate π-π interactions are pivotal to realize the observed stereochemical diversity.

12.
Angew Chem Int Ed Engl ; 61(41): e202208908, 2022 10 10.
Artigo em Inglês | MEDLINE | ID: mdl-35989224

RESUMO

We report herein a rare example of enantiodivergent aldehyde addition with ß-alkenyl allylic boronates via chiral Brønsted acid catalysis. 2,6-Di-9-anthracenyl-substituted chiral phosphoric acid-catalyzed asymmetric allylation using ß-vinyl substituted allylic boronate gave alcohols with R absolute configuration. The sense of asymmetric induction of the catalyst in these reactions is opposite to those in prior reports. Moreover, in the presence of the same acid catalyst, the reactions with ß-2-propenyl substituted allylic boronate generated homoallylic alcohol products with S absolute configuration. Unusual substrate-catalyst C-H⋅⋅⋅π interactions in the favoured reaction transition state were identified as the origins of observed enantiodivergence through DFT computational studies.


Assuntos
Álcoois , Aldeídos , Catálise , Estereoisomerismo
13.
Angew Chem Int Ed Engl ; 61(9): e202113204, 2022 Feb 21.
Artigo em Inglês | MEDLINE | ID: mdl-34889494

RESUMO

Computations and experiments leading to new chiral phosphoric acids (CPAs) for epoxide thionations are reported. Density functional theory calculations reveal the mechanism and origin of the enantioselectivity of such CPA-catalyzed epoxide thionations. The calculated mechanistic information was used to design new efficient CPAs that were tested experimentally and found to be highly effective. Bulky ortho-substituents on the 3,3'-aryl groups of the CPA are important to restrict the position of the epoxide in the key transition states for the enantioselectivity-determining step. Larger para-substituents significantly improve the enantioselectivity of the reaction.

14.
Angew Chem Int Ed Engl ; 61(45): e202211211, 2022 11 07.
Artigo em Inglês | MEDLINE | ID: mdl-36111538

RESUMO

The application of Suzuki-Miyaura coupling reaction to forge the atropisomeric biaryls has seen remarkable progress but exploration of this chemistry to directly forge chiral C(aryl)-C(alkene) axis is underdeveloped. The replacement of arene substrates by alkenes intensifies the challenges in terms of reactivity, configurational atropostability of product and selectivity control. By meticulous ligand design and fine-tuning of reaction parameters, we identified a highly active 3,3'-triphenylsilyl-substituted phosphite ligand to realize arene-alkene Suzuki-Miyaura coupling of hindered aryl halides and vinyl boronates under very mild conditions. The axially chiral acyclic aryl-alkenes were generated in commendable efficiency, enantioselectivity and E/Z selectivity.


Assuntos
Alcenos , Paládio , Ligantes , Catálise
15.
J Am Chem Soc ; 143(49): 21066-21076, 2021 12 15.
Artigo em Inglês | MEDLINE | ID: mdl-34852463

RESUMO

The installation of (benzo)thiophene-containing biaryls via coupling reactions has become a staple in designing photoelectric materials. Undeniably, C-H/C-H cross-coupling reactions between two (hetero)aromatics would be a shortcut toward these structural fragments. While more reliable cross-coupling technologies are well-established to provide C2-arylated (benzo)thiophenes, efficient methods that arylate the C3-position remain underdeveloped. Herein we provide insight into the factors that determine regioselectivity switching for these cross-coupling reactions. X-ray crystallographic analysis gives solid evidence for the key roles of triflate in regioselective dearomatization and acetate in base-assisted anti-ß-deprotonated rearomatization. The first isolation and X-ray characterization of a medium-sized dearomatized cyclometalated adduct involving both substrates provide extra insight into aerobic oxidative Ar-H/Ar-H cross-coupling reactions. The mechanistic breakthrough incubates the first example, enabling C-H/C-H-type C3-arylation of benzothiophenes. Finally, this chemistry is used to design blue-emitting thermally activated delayed fluorescence (TADF) materials with a helicene conformation that exhibit a high maximum external quantum efficiency of 25.4% in OLED.

16.
J Org Chem ; 86(23): 17082-17089, 2021 12 03.
Artigo em Inglês | MEDLINE | ID: mdl-34783567

RESUMO

The π-facial selectivity of Diels-Alder cycloadditions of 5-monosubstituted cyclopentadienes is known experimentally and has been extensively studied computationally. Previous studies on 5-monosubstituted cyclopentadienes by the Burnell and Houk groups showed that facial selectivity arises principally from hyperconjugative aromaticity or antiaromaticity of polar groups that cause distortion of the cyclopentadiene; steric effects of nonpolar groups can also be important. We have now explored the stereoselective cycloaddition of 5,5-unsymmetrically substituted cyclopentadienes to an acyl nitroso dienophile reported by Kan and co-workers. Computational studies with M06-2X/6-311+G(d,p) indicate that the stereoselectivity in the cycloadditions of 5,5-unsymmetrically substituted cyclopentadienes is not just a simple combination of effects found for monosubstituted counterparts. Substituent conformations and diene-dienophile steric and electronic interaction effects all influence stereoselectivity. Predictions are made about several as-yet-unstudied cyclopentadiene cycloadditions.


Assuntos
Ciclopentanos , Reação de Cicloadição , Humanos , Conformação Molecular , Estereoisomerismo
17.
Proc Natl Acad Sci U S A ; 115(5): E848-E855, 2018 01 30.
Artigo em Inglês | MEDLINE | ID: mdl-29348209

RESUMO

SpnF is the first monofunctional Diels-Alder/[6+4]-ase that catalyzes a reaction leading to both Diels-Alder and [6+4] adducts through a single transition state. The environment-perturbed transition-state sampling method has been developed to calculate free energies, kinetic isotope effects, and quasi-classical reaction trajectories of enzyme-catalyzed reactions and the uncatalyzed reaction in water. Energetics calculated in this way reproduce the experiment and show that the normal Diels-Alder transition state is stabilized by H bonds with water molecules, while the ambimodal transition state is favored in the enzyme SpnF by both intramolecular hydrogen bonding and hydrophobic binding. Molecular dynamics simulations show that trajectories passing through the ambimodal transition state bifurcate to the [6+4] adduct and the Diels-Alder adduct with a ratio of 1:1 in the gas phase, 1:1.6 in water, and 1:11 in the enzyme. This example shows how an enzyme acts on a vibrational time scale to steer post-transition state trajectories toward the Diels-Alder adduct.


Assuntos
Proteínas de Bactérias/metabolismo , Macrolídeos/metabolismo , Água/química , Catálise , Reação de Cicloadição , Ligação de Hidrogênio , Interações Hidrofóbicas e Hidrofílicas , Cinética , Modelos Químicos , Conformação Molecular , Simulação de Dinâmica Molecular , Teoria Quântica , Saccharopolyspora/enzimologia , Software
18.
Angew Chem Int Ed Engl ; 60(45): 24096-24106, 2021 11 02.
Artigo em Inglês | MEDLINE | ID: mdl-34608723

RESUMO

We report herein the development of stereodivergent syntheses of enantioenriched homoallylic alcohols using chiral nonracemic α-CH2 Bpin-substituted crotylboronate. Chiral phosphoric acid (S)-A-catalyzed asymmetric allyl addition with the reagent gave Z-anti-homoallylic alcohols with excellent enantioselectivities and Z-selectivities. When the enantiomeric acid catalyst (R)-A was utilized, the stereoselectivity was completely reversed and E-anti-homoallylic alcohols were obtained with high E-selectivities and excellent enantioselectivities. By pairing the chirality of the boron reagent with the catalyst, two complementary stereoisomers of chiral homoallylic alcohols can be obtained selectively from the same boron reagent. DFT computational studies were conducted to probe the origins of the observed stereoselectivity. These reactions generate highly enantioenriched homoallylic alcohol products that are valuable for rapid construction of polyketide structural frameworks.

19.
J Cell Physiol ; 235(3): 1986-1994, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-31549399

RESUMO

Bone metabolism is associated with many bone diseases and regulated by multiple signal pathways. Over the past three decades, the functions of a superfamily of evolutionarily conserved transcriptional regulators, known as forkhead box (Fox) family, has been demonstrated to contribute to the bone metabolism. Genetic analysis studies have demonstrated that Fox gene family participate in bone metabolism and that their expression can be regulated by multiple factors. The deregulation of Fox gene family can lead to a series of bone metabolic diseases. In this manuscript, we sketched the biology of the Foxs family, summarized its function of regulating bone metabolism and maintaining bone homeostasis to estimate its potential therapeutic effects in bone diseases, and suggested directions for future exploration in this important field.


Assuntos
Osso e Ossos/metabolismo , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Animais , Homeostase/fisiologia , Humanos , Transdução de Sinais/fisiologia
20.
J Am Chem Soc ; 142(18): 8506-8513, 2020 05 06.
Artigo em Inglês | MEDLINE | ID: mdl-32283928

RESUMO

A general method for the highly enantioselective desymmetrization of 2-alkyl-substituted 1,3-diols is presented. A combination of computational and experimental studies has been utilized to understand the origin of the stereocontrol of oxidative desymmetrization of 1,3-diol benzylideneacetals. DFT calculations demonstrate that the acetal protecting group is highly influential for high enantioselectivity, and a simple but effective new protecting group has been designed. The desymmetrization reactions proceed with high enantioselectivity for a variety of substrates. Moreover, the reaction conditions are also shown to be effective for desymmetrization of 2,2-dialkyl-substituted 1,3-diols, which provides chiral products bearing acyclic all-carbon quaternary stereocenters. The method has been applied to the formal synthesis of indoline alkaloids.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA