Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Neural Netw ; 173: 106216, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38442650

RESUMO

Social relation inference intrinsically requires high-level semantic understanding. In order to accurately infer relations of persons in images, one needs not only to understand scenes and objects in images, but also to adaptively attend to important clues. Unlike prior works of classifying social relations using attention on detected objects, we propose a MUlti-level Conditional Attention (MUCA) mechanism for social relation inference, which attends to scenes, objects and human interactions based on each person pair. Then, we develop a transformer-style network to achieve the MUCA mechanism. The novel network named as Graph-based Relation Inference Transformer (i.e., GRIT) consists of two modules, i.e., a Conditional Query Module (CQM) and a Relation Attention Module (RAM). Specifically, we design a graph-based CQM to generate informative relation queries for all person pairs, which fuses local features and global context for each person pair. Moreover, we fully take advantage of transformer-style networks in RAM for multi-level attentions in classifying social relations. To our best knowledge, GRIT is the first for inferring social relations with multi-level conditional attention. GRIT is end-to-end trainable and significantly outperforms existing methods on two benchmark datasets, e.g., with performance improvement of 7.8% on PIPA and 9.6% on PISC.


Assuntos
Benchmarking , Conhecimento , Humanos , Semântica
2.
Org Lett ; 26(16): 3349-3354, 2024 Apr 26.
Artigo em Inglês | MEDLINE | ID: mdl-38607994

RESUMO

UbiA-type prenyltransferases (PTases) are significant enzymes that lead to structurally diverse meroterpenoids. Herein, we report the identification and characterization of an undescribed UbiA-type PTase, FtaB, that is responsible for the farnesylation of indole-containing diketopiperazines (DKPs) through genome mining. Heterologous expression of the fta gene cluster and non-native pathways result in the production of a series of new C2-farnesylated DKPs. This study broadens the reaction scope of UbiA-type PTases and expands the chemical diversity of meroterpenoids.


Assuntos
Dicetopiperazinas , Dimetilaliltranstransferase , Prenilação , Dimetilaliltranstransferase/metabolismo , Dimetilaliltranstransferase/química , Dimetilaliltranstransferase/genética , Dicetopiperazinas/química , Dicetopiperazinas/metabolismo , Estrutura Molecular , Família Multigênica
3.
Cancer Med ; 13(5): e7104, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38488408

RESUMO

BACKGROUND: Microvascular invasion (MVI) is an independent prognostic factor that is associated with early recurrence and poor survival after resection of hepatocellular carcinoma (HCC). However, the traditional pathology approach is relatively subjective, time-consuming, and heterogeneous in the diagnosis of MVI. The aim of this study was to develop a deep-learning model that could significantly improve the efficiency and accuracy of MVI diagnosis. MATERIALS AND METHODS: We collected H&E-stained slides from 753 patients with HCC at the First Affiliated Hospital of Zhejiang University. An external validation set with 358 patients was selected from The Cancer Genome Atlas database. The deep-learning model was trained by simulating the method used by pathologists to diagnose MVI. Model performance was evaluated with accuracy, precision, recall, F1 score, and the area under the receiver operating characteristic curve. RESULTS: We successfully developed a MVI artificial intelligence diagnostic model (MVI-AIDM) which achieved an accuracy of 94.25% in the independent external validation set. The MVI positive detection rate of MVI-AIDM was significantly higher than the results of pathologists. Visualization results demonstrated the recognition of micro MVIs that were difficult to differentiate by the traditional pathology. Additionally, the model provided automatic quantification of the number of cancer cells and spatial information regarding MVI. CONCLUSIONS: We developed a deep learning diagnostic model, which performed well and improved the efficiency and accuracy of MVI diagnosis. The model provided spatial information of MVI that was essential to accurately predict HCC recurrence after surgery.


Assuntos
Carcinoma Hepatocelular , Aprendizado Profundo , Neoplasias Hepáticas , Humanos , Carcinoma Hepatocelular/patologia , Neoplasias Hepáticas/patologia , Inteligência Artificial , Estudos Retrospectivos , Invasividade Neoplásica
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA