Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 56
Filtrar
1.
Appl Microbiol Biotechnol ; 108(1): 180, 2024 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-38285117

RESUMO

Phenyllactic acid (PLA) generally recognized as a natural organic acid shows against Vibrio parahaemolyticus activity. In this study, V. parahaemolyticus ATCC17802 (Vp17802) was cultured under the stress of 1/2MIC PLA, and then the antibacterial mechanisms were explored via transcriptomics. The minimum inhibitory concentration (MIC) of PLA against Vp17802 was 3.2 mg/mL, and the time-kill analysis resulted that Vp17802 was inhibited. PLA was able to destroy the bacterial membrane, leading to the leakage of intracellular substances and decline of ATP levels. The RNA-sequencing analysis results indicated that 1616 significantly differentially expressed genes were identified, among which 190 were up-regulated and 1426 were down-regulated. Down-regulation of the icd2 gene in the TCA cycle mediates blockage of tyrosine metabolic, arginine biosynthesis, and oxidative phosphorylation, causing insufficient energy supply of Vp17802. Moreover, PLA could cause amino acids, metal ions, and phosphate transporters to be blocked, affecting the acquisition of nutrients. The treatment by PLA altered the expression of genes encoding functions involved in quorum sensing, flagellar assembly, and cell chemotaxis pathway, which may be interfering with the biofilm formation in Vp17802, reducing cell motility. Overall, 1.6 mg/mL PLA inhibited the growth of Vp17802 by disrupting to uptake of nutrients, cell metabolism, and the formation of biofilms. The results suggested a new direction for exploring the activity of PLA against Vp17802 and provided a theoretical basis for bacterial pathogen control in the food industry. KEY POINTS: •RNA sequencing was carried out to indicate the antibacterial mechanism of Vp17802. •The icd2 gene in the TCA cycle mediates blockage of metabolic of Vp17802. •The biofilm formation has interfered with 1.6 mg/mL PLA, which could reduce cell motility and virulence.


Assuntos
Lactatos , Vibrio parahaemolyticus , Vibrio parahaemolyticus/genética , Perfilação da Expressão Gênica , Antibacterianos/farmacologia , Poliésteres
2.
Microb Pathog ; 173(Pt B): 105883, 2022 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-36396071

RESUMO

The control of E. coli activity from forming biofilm and persister cells is an essential factor in both the health and food industries. The efficacy of antimicrobial treatment is often limited due to their low penetrability as biofilm formation protect cells within from physical or chemical threats. Among other factors, osmotic stress has shown to have a high capacity to enhance the antimicrobial activities against various pathogens. Thus, this study aimed to test the hypothesis that the antimicrobial activity of cineole (CN) could be enhanced under osmotic stress to inhibit biofilm and persister cells. Time-kill analysis revealed that CN under NaCl-induced osmotic stress (CN-S) had better inhibitory effect on E. coli biofilm. 5% CN-S altered the integrity, hydration, motilities and exopolysaccharide production of E. coli cells. Also, the outer membrane permeability, surface roughness and hydrophobicity which determine initial cell adhesion, aggregation and colony assembly were significantly perturbed. Furthermore, the expression levels of virulence genes stx1, stx2, eae, flhD, and the TA system antitoxin genes mazE, hipB were downregulated. When applied to cucumber, the rate of increase in internalized bacterial cells significantly reduced after storage at 4 °C for 48 h. Thus, the results suggested that the application of osmotic stress could minimize the working concentration of antimicrobials in real food systems, which could be helpful in counteracting the growing concern of microbial resistance.


Assuntos
Escherichia coli O157 , Proteínas de Escherichia coli , Sistemas Toxina-Antitoxina , Eucaliptol , Escherichia coli O157/genética , Antibacterianos/farmacologia , Pressão Osmótica , Biofilmes , Proteínas de Ligação a DNA , Proteínas de Escherichia coli/genética
3.
J Appl Microbiol ; 132(5): 3937-3950, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35178822

RESUMO

AIMS: To reveal the antibacterial mechanism of the combination of thymol and cinnamaldehyde to Listeria monocytogenes ATCC 19115 on autoclaved chicken breast. METHODS AND RESULTS: In this study, L. monocytogenes ATCC 19115 on autoclaved chicken breast was exposed to the stress of 125 µg/ml thymol and 125 µg/ml cinnamaldehyde, and transcriptome analysis was used to reveal the crucial antibacterial mechanism. According to the results, 1303 significantly differentially expressed genes (DEGs) were identified. Treated by thymol and cinnamaldehyde in combination, pyrimidine and branched-chain amino acid biosynthesis of L. monocytogenes were thwarted which impairs its nucleic acid biosynthesis and intracellular metabolism. The up-regulated DEGs involved in membrane composition and function contributed to membrane repair. Besides, pyruvate catabolism and TCA cycle were restrained which brought about the disturbance of amino acid metabolism. ABC transporters were also perturbed, for instance, the uptake of cysteine, D-methionine, and betaine was activated, while the uptake of vitamin, iron, and carnitine was repressed. Thus, L. monocytogenes tended to activate PTS, glycolysis, glycerol catabolism, and pentose phosphate pathways to obtain energy to adapt to the hostile condition. Noticeably, DEGs involved in virulence factors were totally down-regulated, including genes devoted to encoding flagella, chemotaxis, biofilm formation, internalin as well as virulence gene clusters. CONCLUSIONS: The combination of thymol and cinnamaldehyde is effective to reduce the survival and potential virulence of L. monocytogenes on autoclaved chicken breast. SIGNIFICANCE AND IMPACT OF STUDY: This work contributes to providing theoretical information for the application and optimization of thymol and cinnamaldehyde in ready-to-eat meat products to inhibit L. monocytogenes.


Assuntos
Listeria monocytogenes , Acroleína/análogos & derivados , Animais , Antibacterianos/farmacologia , Galinhas , Listeria monocytogenes/metabolismo , Timol/farmacologia , Virulência
4.
Food Microbiol ; 102: 103925, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34809951

RESUMO

Antibacterial activity against Escherichia coli O157:H7 and Staphylococcus aureus of five typical plant-derived compounds [gallic acid (G.A), citral (Cit), thymol (Thy), salicylic acid (S.A), lauric acid (L.A)] were investigated by determining the minimum inhibitory concentration (MIC) and the fractional inhibitory concentration index (FICI). The results showed that only a combination of Thy and G.A (TGA), with a concentration of 0.1 and 1.25 mg/mL, respectively, had a synergistic effect (FICI = 0.5) on both E. coli O157:H7 and S. aureus. The amount of Thy and G.A in mixture were four-fold lower than the MICs of the individuals shown to cause the equivalent antimicrobial activity in trypticase soy broth (TSB). The microbial reduction obtained in TSB with addition of TGA were significantly higher (P < 0.05) than the reduction shown for the broth supplemented with the separated phenolics. TGA caused the changes of morphology and membrane integrity of bacteria. Additionally, the application of TGA on fresh-cut tomatoes are investigated. Fresh-cut tomatoes inoculated with E. coli O157:H7and S. aureus were washed for 2min, 5min, 10min at 4 °C, 25 °C, 40 °C in 0.3% NaOCl, or water containing TGA at various concentrations. Overall, the reduction of TGA achieved against S. aureus is higher than E. coli O157:H7. Same concentrations of combined antimicrobials at a temperature of 40 °C further increased the degree of microbial inactivation, with an additional 0.89-1.51 log CFU/g reduction compared to that at 25 °C. Moreover, 1/2MICThy+1/2MICG.A at 25 °C for 10min or 40 °C for 5min were generally acceptable with sensorial scores higher than 7. Our results showed that TGA could work synergistically on the inactivation of the tested bacteria and may be used as an alternative disinfectant of fresh produce.


Assuntos
Anti-Infecciosos , Escherichia coli O157 , Ácido Gálico , Solanum lycopersicum , Staphylococcus aureus , Timol , Anti-Infecciosos/farmacologia , Contagem de Colônia Microbiana , Escherichia coli O157/efeitos dos fármacos , Contaminação de Alimentos/prevenção & controle , Microbiologia de Alimentos , Ácido Gálico/farmacologia , Solanum lycopersicum/microbiologia , Staphylococcus aureus/efeitos dos fármacos , Timol/farmacologia
5.
Plant Foods Hum Nutr ; 77(1): 44-50, 2022 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-34822099

RESUMO

Gut microbiota balance and metabolites have become a potentially mechanism in maintaining health. The specific aim of this study was to compare the modulation of puerarin and puerarin acid esters on gut microbial composition and metabolites. Male mice were fed a control diet or diets supplemented with puerarin, puerarin propanoate ester, puerarin hexanoate ester, puerarin myristate ester for 24 h, respectively. The result revealed that puerarin acid esters with different chain lengths showed different activities to create more own impacted bacterial. Puerarin propanoate and puerarin hexanoate ester significantly improved the diversity of microbiota and promoted the relative abundance of beneficial gut microbiota such as Lactobacillus, Barnesiella, Clostridium IV, Prevotella. Additionally, the puerarin propanoate ester group showed the capacity to deliver specific propionic acid to the colon. But esters with medium-long chain lengths had more opportunity to alter gut microbiota for enhancing the short chain fatty acids production. As a whole, puerarin acid esters with different chain lengths supplements shaped different gut microbial and short chain fatty acids metabolism, which could improve human health.


Assuntos
Microbioma Gastrointestinal , Animais , Ésteres , Ácidos Graxos Voláteis/metabolismo , Fezes/microbiologia , Isoflavonas , Camundongos , Propionatos , Ratos
6.
Food Microbiol ; 92: 103585, 2020 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-32950169

RESUMO

Salmonella Enteritidis is a major cause of foodborne gastroenteritis and is thus a persistent threat to global public health. The acid adaptation response helps Salmonella survive exposure to gastric environment during ingestion. In a previous study we highlighted the damage caused to cell membrane and the regulation of intracellular reactive oxygen species (ROS) in S. Enteritidis. In this study, we applied both physiologic and iTRAQ analyses to explore the regulatory mechanism of acid resistance in Salmonella. It was found that after S. Enteritidis was subject to a 1 h period of acid adaptation at pH 5.5, an additional 1 h period of acid shock stress at pH 3.0 caused less Salmonella cell death than in non-acid adapted Salmonella cells. Although there were no significant differences between adapted and non-adapted cells in terms of cell membrane damage (e.g., membrane permeability or lipid peroxidation) after 30 min, intracellular ROS level in acid adapted cells was dramatically reduced compared to that in non-acid adapted cells, indicating that acid adaption promoted less ROS generation or increased the ability of ROS scavenging with little reduction in the integrity of the cell membrane. These findings were confirmed via an iTRAQ analysis. The adapted cells were shown to trigger incorporation of exogenous long-chain fatty acids into the cellular membrane, resulting in a different membrane lipid profile and promoting survival rate under acid stress. S. Enteritidis experiences oxidative damage and iron deficiency under acid stress, but after acid adaption S. Enteritidis cells were able to balance their concentrations of intracellular ROS. Specifically, SodAB consumed the free protons responsible for forming reactive oxygen intermediates (ROIs) and KatE protected cells from the toxic effects of ROIs. Additionally, acid-labile proteins released free unbound iron promoting ferroptotic metabolism, and NADH reduced GSSH to G-SH, protecting cells from acid/oxidative stress.


Assuntos
Ácidos/metabolismo , Espécies Reativas de Oxigênio/metabolismo , Salmonella enteritidis/metabolismo , Adaptação Fisiológica , Proteínas de Bactérias/química , Proteínas de Bactérias/genética , Proteínas de Bactérias/metabolismo , Ácidos Graxos , Proteômica , Salmonella enteritidis/química , Salmonella enteritidis/genética
7.
Can J Microbiol ; 62(3): 191-200, 2016 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-26751178

RESUMO

Cronobacter sakazakii is a severe virulent strain that is frequently detected in powdered infant formula (PIF). Therefore, it is necessary to develop a fast and specific detection method. The specificity of our newly developed quantitative real-time PCR (qRT-PCR) was validated with DNA from 46 strains. Among them, 12 C. sakazakii strains were correctly amplified, whereas no positive florescent signal was observed from 34 nontarget controls. The detection limit of C. sakazakii was about 110 CFU/mL in broth and 1100 CFU/g in PIF. After enrichment in buffered peptone water for 6 h, our developed qRT-PCR assay could reliably detect C. sakazakii when the inoculation level was as low as 2 CFU/25 g (0.08 CFU/g) in PIF. The growth of C. sakazakii could be inhibited by the presence of Lactobacillus pentosus and Bacillus cereus, which used a longer enrichment period before the isolation was accomplished. However, at 5 and 50 CFU/25 g inoculation levels of C. sakazakii in the presence of 4 × 10(6) CFU L. pentosus/25 g or of 2 × 10(4) CFU B. cereus/25 g, the qRT-PCR assay could detect the presence of Cronobacter even though these artificially spiked samples were negative in culture. Therefore, our results indicated that the qRT-PCR assay could detect samples containing inhibitors and could avoid false negatives by using an internal amplification control.


Assuntos
Cronobacter sakazakii/isolamento & purificação , Proteínas de Escherichia coli/genética , Fórmulas Infantis/microbiologia , Fósforo-Oxigênio Liases/genética , Reação em Cadeia da Polimerase em Tempo Real/métodos , Cronobacter sakazakii/genética , Microbiologia de Alimentos , Humanos , Lactente
8.
Zhongguo Yi Liao Qi Xie Za Zhi ; 40(5): 344-6, 2016 Sep.
Artigo em Chinês | MEDLINE | ID: mdl-29792629

RESUMO

The linear transmit solution is considered as one of the technologies which can improve the signal to noise ratio (SNR) of the transmit channel of the medical ultrasound system effectively. A linear transmit design based on AD9106 is introduced. The design can reduce the system design complexity and achieve the desired functionality of the different imaging modes and techniques.


Assuntos
Ultrassonografia , Humanos , Imagens de Fantasmas , Razão Sinal-Ruído
9.
J Food Sci ; 89(4): 2384-2396, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38389445

RESUMO

(-)-Epigallocatechin-3-gallate (EGCG) has been shown antibacterial activity against Campylobacter jejuni; however, the relevant antibacterial mechanism is unknown. In this study, phenotypic experiments and RNA sequencing were used to explore the antibacterial mechanism. The minimum inhibitory concentration of EGCG on C. jejuni was 32 µg/mL. EGCG-treated was able to increase intracellular reactive oxygen species levels and decline bacterial motility. The morphology and cell membrane of C. jejuni after EGCG treatment were observed collapsed, broken, and agglomerated by field emission scanning electron microscopy and fluorescent microscopy. The RNA-seq analysis presents that there are 36 and 72 differential expressed genes after C. jejuni was treated by EGCG with the concentration of 16 and 32 µg/mL, respectively. EGCG-treated increased the thioredoxin expression, which was a critical protein to resist oxidative stress. Moreover, downregulation of the flgH and flgM gene in flagellin biosynthesis of C. jejuni was able to impair the flagella, reducing cell motility and virulence. The primary antibacterial mechanism revealed by RNA-seq is that EGCG with iron-chelating activity competes with C. jejuni for iron, causing iron deficiency in C. jejuni, which potentially impacts the survival and virulence of C. jejuni. The results suggested a new direction for exploring the activity of EGCG against C. jejuni in the food industry. PRACTICAL APPLICATION: A deeper understanding of the antibacterial mechanism of EGCG against C. jejuni was more beneficial in improving the food safety, eliminating concerns about human health caused by C. jejuni in future food, and promoting the natural antibacterial agent EGCG application in the food industry.


Assuntos
Campylobacter jejuni , Catequina , Catequina/análogos & derivados , Humanos , Campylobacter jejuni/genética , Antibacterianos/farmacologia , Perfilação da Expressão Gênica , Estresse Oxidativo , Catequina/farmacologia
10.
Int J Biol Macromol ; 274(Pt 1): 133279, 2024 Jun 19.
Artigo em Inglês | MEDLINE | ID: mdl-38906356

RESUMO

Resistant starch (RS) can potentially prevent type 2 diabetes through the modulation of intestinal microbiota and microbial metabolites. Currently, it has been wildly noted that altering the intestinal microbial composition and short-chain fatty acids levels can achieve therapeutic effects, although the specific mechanisms were rarely elucidated. This review systematically explores the structural characteristics of different RS, analyzes the cross-feeding mechanism utilized by intestinal microbiota, and outlines the pathways and targets of butyrate, a primary microbial metabolite, for treating diabetes. Different RS types may have a unique impact on microbiota composition and their cross-feeding, thus exploring regulatory mechanisms of RS on diabetes through intestinal flora interaction and their metabolites could pave the way for more effective treatment outcomes for host health. Furthermore, by understanding the mechanisms of strain-level cross-feeding and metabolites of RS, precise dietary supplementation methods targeted at intestinal composition and metabolites can be achieved to improve T2DM.

11.
Food Chem ; 459: 140346, 2024 Jul 04.
Artigo em Inglês | MEDLINE | ID: mdl-38981378

RESUMO

Phyllanthus emblica L. offers promising therapeutic potential for inflammatory diseases. This study revealed the molecular structure of a homogeneous polysaccharide purified from Phyllanthus emblica L. (PEP-1) and evaluated its anti-inflammatory effects on ulcerative colitis (UC) in mice. In the in vivo experiment, administered in varying dosages to dextran sulfate sodium (DSS)-induced UC models, PEP-1 significantly alleviated colonic symptoms, histological damages and reshaped the gut microbiota. Notably, it adjusted the Firmicutes/Bacteroidetes ratio and reduced pro-inflammatory species, closely aligning with shifts in the fecal metabolites and metabolic pathways such as the metabolism of pyrimidine, beta-alanine, and purine. These findings underscore the potential of PEP-1 as a therapeutic agent for UC, providing insights into the mechanisms through gut microbiota and metabolic modulation.

12.
Can J Microbiol ; 59(3): 157-63, 2013 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23540333

RESUMO

Escherichia coli O157:H7 can enter into a viable but nonculturable (VBNC) state under stress conditions. The aims of the present study were to examine the influences of environmental factors on the survivability and culturability of E. coli O157:H7 and to develop an approach for accurate detection of VBNC E. coli O157:H7. The E. coli O157:H7 strain ATCC 6589 was inoculated into 3 induction microcosm models: (i) Luria-Bertani broth, (ii) sterilized tap water, and (iii) sterilized physiological saline solution. Our results showed that low temperature and nutritional starvation significantly impacted on the survivability of E. coli O157:H7 cells and that the in-vitro-induced VBNC cells were capable of resuscitating under normal temperature and appropriate nutrients. We tested the effectiveness of an approach combining propidium monoazide (PMA) treatment with real-time polymerase chain reaction (PMA-qPCR) for accurate quantification of total, viable, dead, and VBNC cells under different induction microcosm models. Our results indicated different threshold cycle (Ct) values for PMA-treated cells and untreated cells (ΔCt = 4.97, 4.29, and 3.30 for Luria-Bertani broth, sterilized tap water, and sterilized physiological saline solution, respectively). We determined the quantification limit of this PMA-qPCR approach to be 1 × 10(2) cells·mL(-1), providing sufficient sensitivity for detection of VBNC E. coli O157:H7 cells to no less than 100 cells·mL(-1). This study clearly demonstrated the feasibility and effectiveness of using PMA-qPCR to accurately quantify E. coli O157:H7 in a VBNC state.


Assuntos
Escherichia coli O157/isolamento & purificação , Azidas/farmacologia , Carga Bacteriana/métodos , Meios de Cultura , DNA Bacteriano/isolamento & purificação , Escherichia coli O157/efeitos dos fármacos , Escherichia coli O157/genética , Escherichia coli O157/fisiologia , Fenantridinas/farmacologia , Propídio/análogos & derivados , Reação em Cadeia da Polimerase em Tempo Real/métodos
13.
Chin Med Sci J ; 28(2): 113-6, 2013 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-23806375

RESUMO

OBJECTIVE: To explore the safety and efficacy of frameless stereotactic brain biopsy. METHODS: Diagnostic accuracy was calculated by comparing biopsy diagnosis with definitive pathology in 62 patients who underwent frameless stereotactic brain biopsy between January 2008 and December 2010 in Xiamen University Southeast Hospital. Preoperative characteristics and histological diagnosis were reviewed and then information was analysed to identify factors associated with the biopsy not yielding a diagnosis and complications. RESULTS: Diagnostic yield was 93.5%. No differences were found between pathological diagnosis and frozen pathological diagnosis. The most common lesions were astrocytic lesions, included 16 cases of low-grade glioma and 12 cases of malignant glioma. Remote hemorrhage, metastasis, and lymphoma were following in incidence. Multiple brain lesions were found in 17 cases (27.4%). Eleven cases were frontal lesions (17.7%), 8 were frontotemporal (12.9%), 6 were frontoparietal (9.7%), and 5 each were temporal, parietal, and parietotemporal lesions (8.1%). Postoperative complications occurred in 21.0% of the patients after biopsies, including 10 haemorrhages (16.1%) and 3 temporary neurological deficits (1 epilepsy, 1 headache, and 1 partial hemiparesis). No patient required operation for hematoma evacuation. CONCLUSION: Frameless stereotactic biopsy is an effective and safe technique for histologic diagnosis of brain lesions, particularly for multifocal and frontal lesions.


Assuntos
Biópsia/métodos , Encéfalo/patologia , Técnicas Estereotáxicas , Adolescente , Adulto , Idoso , Criança , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Técnicas Estereotáxicas/efeitos adversos
14.
Food Res Int ; 172: 113110, 2023 10.
Artigo em Inglês | MEDLINE | ID: mdl-37689877

RESUMO

The objective of this study is to explore the antibacterial action modes and virulence-inhibitory effects of allyl isothiocyanate (AITC) against Clostridium perfringens (C. perfringens). The minimum inhibitory concentration (MIC) of AITC against vegetative cells of Cp 13124 was 0.1 µL/mL, and the time-kill kinetics analysis revealed that AITC could significantly suppress the growth of Cp 13124. According to the results from scanning electron microscopy (SEM), fluorescence microscopy, and UV absorbance substance detection, the cell membrane of Cp 13124 was damaged upon AITC treatment, causing a loss of integrity and the release of intracellular substances. Meanwhile, the fluorescence quenching experiment indicated the interaction of AIT-C with membrane proteins, which caused changes in the conformation of membrane proteins. Measurement of reactive oxygen species (ROS) and flow cytometry analysis demonstrated that AITC could induce apoptosis through oxidative stress. The formation of Cp 13124 biofilms was inhibited by AITC using the crystalline violet method, which was possibly related to the inhibition of sliding motility. Finally, low concentrations of AITC could be used as an antibacterial agent to inhibit the outgrowth of Cp 13124 in cooked pork, suggesting that AITC is a promising candidate for novel preservatives in the meat business.


Assuntos
Carne de Porco , Carne Vermelha , Suínos , Animais , Clostridium perfringens , Virulência , Antibacterianos/farmacologia , Proteínas de Membrana
15.
J Agric Food Chem ; 71(18): 6999-7008, 2023 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-37102314

RESUMO

The anti-inflammation effect of aqueous Phyllanthus emblica L. extract (APE) and its possible underlying mechanism in dextran sulfate sodium (DSS)-induced mice chronic colonic inflammation were studied. APE treatment significantly improved the colitic symptoms, including ameliorating the shortening of the colon, increasing the DSS-induced body weight loss, reducing the disease activity index, and reversing the condition of colon tissue damage of mucus lost and goblet cell reduction. Overproduction of serum pro-inflammatory cytokines were suppressed by the treatment of APE. Gut microbiome analysis showed that APE remodeled the structure of gut bacteria in phylum and genus levels, upregulating the abundance of phylum Bacteroidetes, family Muribaculaceae, and genus Bacteroides and downregulating the abundance of phylum Firmicutes. The reshaped gut microbiome caused metabolic functions and pathway change with enhanced queuosine biosynthesis and reduced polyamine synthesis pathway. Colon tissue transcriptome analysis further elucidated APE-inhibited mitogen-activated protein kinase (MAPK), cytokine-cytokine receptor interaction, and tumor necrosis factor (TNF) signaling pathways and the expressions of the genes that promote the progress of colorectal cancer. It turned out that APE reshaped the gut microbiome and inhibited MAPK, cytokine-cytokine receptor interaction, and TNF signaling pathways as well as the colorectal-cancer-related genes to exert its colitis protective effect.


Assuntos
Colite , Microbioma Gastrointestinal , Hominidae , Phyllanthus emblica , Animais , Camundongos , Dextranos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Inflamação , Citocinas/genética , Proteínas Quinases Ativadas por Mitógeno , Receptores de Citocinas , Expressão Gênica , Sulfatos , Extratos Vegetais , Sódio
16.
Food Funct ; 14(16): 7550-7561, 2023 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-37526638

RESUMO

The anti-inflammatory effect of ellagic acid (EA) and its possible underlying mechanism in dextran sulfate sodium (DSS)-induced mouse chronic colonic inflammation were studied. It was observed that EA administration significantly alleviated the colonic inflammation phenotypes, including decreasing the disease activity index (DAI), enhancing the body weight loss, and improving the shortened length of the colon and pathological damage of colon tissue. Additionally, EA reshaped the constitution of the gut microbiota by elevating the ratio of Bacteroidetes along with Bacteroides and Muribaculaceae, while decreasing the proportion of Firmicutes. The Phylogenetic Investigation of Communities by Reconstruction of Unobserved States 2 (PICRUSt2) revealed that the metabolic function of the gut microbiota was also changed. Furthermore, mouse colon transcriptome analysis showed that the tight junction and peroxisome proliferator-activated receptor (PPAR) signaling pathways were activated and the expressions of related genes were upregulated after EA intervention. These results showed that EA could remodel the gut bacterial composition, change the intestinal epithelial cell gene expressions in mice, and consequently improve the colonic inflammatory symptoms.


Assuntos
Colite , Microbioma Gastrointestinal , Animais , Camundongos , Colite/induzido quimicamente , Colite/tratamento farmacológico , Colite/genética , Colo/metabolismo , Sulfato de Dextrana , Modelos Animais de Doenças , Ácido Elágico/farmacologia , Ácido Elágico/metabolismo , Células Epiteliais/metabolismo , Expressão Gênica , Inflamação/tratamento farmacológico , Inflamação/genética , Inflamação/metabolismo , Camundongos Endogâmicos C57BL , Filogenia
17.
Appl Microbiol Biotechnol ; 93(1): 143-50, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21755282

RESUMO

Biocatalytic acylation of 1-ß-D-arabinofuranosylcytosine (ara-C) was developed using whole cell of Aspergillus oryzae as a novel catalyst. (13)C nuclear magnetic resonance (NMR) analysis indicated that the whole-cell biocatalyst had more specific activity toward the 3'-hydroxyl group than 5'-hydroxyl group among the available hydroxyl groups in sugar moiety of ara-C. Except for glucose and maltose, 11 carbon sources supplemented to basal media, including Spans, Tweens, olive oil and oleic acid, exhibited notable enhancement effects on both the cell growth and the acylation reactions. It was suggested that the carbon sources containing controlled-release oleic acid were the important substrates for the production of fungal cell-bound lipase with specific activity, partially due to a gradual induction effect of their released oleic acid on the cell-bound lipase production. Despite the low initial reaction rate and substrate conversion, the addition of 2.0 g/l Span 80 resulted in a higher 3'-regioselectivity of the cells than 81%. By using Tween 85 at its optimum concentration of 5.0 g/l, however, the highest initial rates (3.2 mmol/l h) and substrate conversion (76%) of the whole-cell catalyzed acylation of ara-C can be achieved. It was also found that the 3'-regioselectivity of the cells showed observable increase by extending the culture time. And the activity of cell-bound lipase drastically increased in the early stage of cell growth and then declined in the late culture stage, whatever the culture media used. Our results thus indicated that A. oryzae whole cell was a promising green tool for biosynthesis of nucleoside esters with potential bioactivities.


Assuntos
Aspergillus oryzae/metabolismo , Citarabina/metabolismo , Lipase/metabolismo , Acetilação , Carbono/metabolismo , Meios de Cultura/química , Espectroscopia de Ressonância Magnética , Solventes
18.
Foods ; 11(10)2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35627061

RESUMO

Phyllanthus emblica L. fruits were extracted by a hot water assistant with ultrasonication to obtain aqueous Phyllanthus emblica L. extract (APE). The ameliorating functional dyspepsia (FD) effect of a low dose (150 mg/kg) and a high dose (300 mg/kg) of APE was exhibited by determining the gastrointestinal motility, gastrointestinal hormones, and gut microbiome shifts in reserpine induced FD male balb/c mice. APE increased the gastrointestinal motility including the gastric emptying (GE) rate and small intestinal transit (SIT) rate. The level of serum gastrointestinal hormones such as motilin (MTL) and gastrin (GAS) increased, and the vasoactive intestinal peptide (VIP) level decreased after the administration of APE. Furthermore, the gut microbiome analysis demonstrated that APE could regulate the microbiome structure and restore homeostasis by elevating useful bacterial abundance, while simultaneously decreasing harmful bacterial abundance. This study demonstrated the ameliorating FD effect of APE and its potential efficacy in curing functional gastrointestinal disorders and maintaining a healthy digestive tract.

19.
Toxicon ; 213: 92-98, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35489426

RESUMO

Staphylococcus aureus (S. aureus) is known to be one of the most common foodborne pathogens capable of secreting a wide range of exotoxins such as enterotoxin, which severely threatens the health of consumers. Over the past few years, the development of safe and effective strategies in inhibiting the growth and enterotoxins generation of S. aureus in food turns out to be the research focus and emphasis. This research explores citronellal (CIT), a native compound with extensive existence in spices, which could effectively inhibit the growth and enterotoxins generation of S. aureus (ATCC 29213). Results from minimal inhibitory concentration (MIC), minimum bactericidal concentration (MBC), and time-kill curves, showed that CIT could tremendously inhibit the growth of S. aureus. Analysis on hemolysin showed that CIT at sub-MIC could significantly (p < 0.05) inhibit the hemolytic activity of S. aureus. As revealed by the results of ELISA, the production of enterotoxins in the culture supernatant and pork meat decreased significantly (p < 0.05) after exposure to CIT at sub-MIC. Furthermore, a significant (p < 0.05) decrease in dose-dependent was found in the transcription levels of virulence-related genes. In all, CIT proved to be a possible inhibitor of the growth and enterotoxins production of S. aureus with highly promising application in the food industry.


Assuntos
Enterotoxinas , Infecções Estafilocócicas , Monoterpenos Acíclicos , Aldeídos , Enterotoxinas/análise , Microbiologia de Alimentos , Humanos , Staphylococcus aureus
20.
Food Res Int ; 156: 111344, 2022 06.
Artigo em Inglês | MEDLINE | ID: mdl-35651090

RESUMO

A new Aspergillus niger whole-cell catalyst was cultured for the cascade hydrolysis of hesperidin (HES) to produce high-value hesperetin-7-O-glucoside (HG) and hesperetin with high conversion (above 90%). Moreover, the inducers used were shown to be useful for cell growth and to induce cells to produce specific enzymes. Remarkably, the type of inducers determined whether the cells can hydrolyze HES. The product composition was also controllable by adjusting different inducers. Transcriptome analysis suggested that both naringin-vs-blank group and saccharose-vs-blank group had obviously difference in gene expression. The naringin-vs-blank group was mainly up-regulated differentially expressed genes (DEGs), while saccharose-vs-blank group was mainly down-regulated DEGs. The Gene Ontology (GO) analysis showed that whether naringin or saccharose was added as an inducer would greatly affect the catalytic activity of cells. Furthermore, 3 genes related to rhamnosidase, 14 genes related to glucosidase and 5 genes related to hydrolase activity were found. These genes were not only involved in rhamnosidase and glucosidase activities, but also spliceosome and the sucrose and starch metabolic pathways. The quantitative real-time polymerase chain reaction (qRT-PCR) analysis indicated that the results of transcriptome sequencing were reliable. This study gave a new approach to hydrolyze HES, and new perspectives to understand the mechanisms associated with the hydrolysis of whole-cell catalyst.


Assuntos
Citrus , Aspergillus , Aspergillus niger/genética , Flavonoides , Glucosidases , Hidrólise , Sacarose , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA