Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Phys Rev Lett ; 124(5): 057404, 2020 Feb 07.
Artigo em Inglês | MEDLINE | ID: mdl-32083911

RESUMO

We investigate the quasiparticle dynamics in the prototypical heavy fermion CeCoIn_{5} using ultrafast optical pump-probe spectroscopy. Our results indicate that this material system undergoes hybridization fluctuations before the establishment of heavy electron coherence, as the temperature decreases from ∼120 K (T^{†}) to ∼55 K (T^{*}). We reveal that the anomalous coherent phonon softening and damping reduction below T^{*} are directly associated with the emergence of collective hybridization. We also discover a distinct collective mode with an energy of ∼8 meV, which may be experimental evidence of the predicted unconventional density wave. Our findings provide important information for understanding the hybridization dynamics in heavy fermion systems.

2.
Phys Rev Lett ; 124(20): 207001, 2020 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-32501078

RESUMO

By employing a series of experimental techniques, we provide clear evidence that CaPtAs represents a rare example of a noncentrosymmetric superconductor which simultaneously exhibits nodes in the superconducting gap and broken time-reversal symmetry (TRS) in its superconducting state (below T_{c}≈1.5 K). Unlike in fully gapped superconductors, the magnetic penetration depth λ(T) does not saturate at low temperatures, but instead it shows a T^{2} dependence, characteristic of gap nodes. Both the superfluid density and the electronic specific heat are best described by a two-gap model comprising of a nodeless gap and a gap with nodes, rather than by single-band models. At the same time, zero-field muon-spin relaxation spectra exhibit increased relaxation rates below the onset of superconductivity, implying that TRS is broken in the superconducting state of CaPtAs, hence indicating its unconventional nature. Our observations suggest CaPtAs to be a new remarkable material that links two apparently disparate classes, that of TRS-breaking correlated magnetic superconductors with nodal gaps and the weakly correlated noncentrosymmetric superconductors with broken TRS, normally exhibiting only a fully gapped behavior.

3.
Phys Rev Lett ; 121(25): 257002, 2018 Dec 21.
Artigo em Inglês | MEDLINE | ID: mdl-30608781

RESUMO

To trace the origin of time-reversal symmetry breaking (TRSB) in Re-based superconductors, we performed comparative muon-spin rotation and relaxation (µSR) studies of superconducting noncentrosymmetric Re_{0.82}Nb_{0.18} (T_{c}=8.8 K) and centrosymmetric Re (T_{c}=2.7 K). In Re_{0.82}Nb_{0.18}, the low-temperature superfluid density and the electronic specific heat evidence a fully gapped superconducting state, whose enhanced gap magnitude and specific-heat discontinuity suggest a moderately strong electron-phonon coupling. In both Re_{0.82}Nb_{0.18} and pure Re, the spontaneous magnetic fields revealed by zero-field µSR below T_{c} indicate time-reversal symmetry breaking and thus unconventional superconductivity. The concomitant occurrence of TRSB in centrosymmetric Re and noncentrosymmetric ReT (T=transition metal), yet its preservation in the isostructural noncentrosymmetric superconductors Mg_{10}Ir_{19}B_{16} and Nb_{0.5}Os_{0.5}, strongly suggests that the local electronic structure of Re is crucial for understanding the TRSB superconducting state in Re and ReT. We discuss the superconducting order parameter symmetries that are compatible with the experimental observations.

4.
Phys Rev Lett ; 120(6): 066403, 2018 Feb 09.
Artigo em Inglês | MEDLINE | ID: mdl-29481263

RESUMO

A key issue in heavy fermion research is how subtle changes in the hybridization between the 4f (5f) and conduction electrons can result in fundamentally different ground states. CeRhIn_{5} stands out as a particularly notable example: when replacing Rh with either Co or Ir, antiferromagnetism gives way to superconductivity. In this photoemission study of CeRhIn_{5}, we demonstrate that the use of resonant angle-resolved photoemission spectroscopy with polarized light allows us to extract detailed information on the 4f crystal field states and details on the 4f and conduction electron hybridization, which together determine the ground state. We directly observe weakly dispersive Kondo resonances of f electrons and identify two of the three Ce 4f_{5/2}^{1} crystal-electric-field levels and band-dependent hybridization, which signals that the hybridization occurs primarily between the Ce 4f states in the CeIn_{3} layer and two more three-dimensional bands composed of the Rh 4d and In 5p orbitals in the RhIn_{2} layer. Our results allow us to connect the properties observed at elevated temperatures with the unusual low-temperature properties of this enigmatic heavy fermion compound.

5.
Proc Natl Acad Sci U S A ; 112(3): 673-8, 2015 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-25561536

RESUMO

Conventional, thermally driven continuous phase transitions are described by universal critical behavior that is independent of the specific microscopic details of a material. However, many current studies focus on materials that exhibit quantum-driven continuous phase transitions (quantum critical points, or QCPs) at absolute zero temperature. The classification of such QCPs and the question of whether they show universal behavior remain open issues. Here we report measurements of heat capacity and de Haas-van Alphen (dHvA) oscillations at low temperatures across a field-induced antiferromagnetic QCP (Bc0 ≈ 50 T) in the heavy-fermion metal CeRhIn5. A sharp, magnetic-field-induced change in Fermi surface is detected both in the dHvA effect and Hall resistivity at B0* ≈ 30 T, well inside the antiferromagnetic phase. Comparisons with band-structure calculations and properties of isostructural CeCoIn5 suggest that the Fermi-surface change at B0* is associated with a localized-to-itinerant transition of the Ce-4f electrons in CeRhIn5. Taken in conjunction with pressure experiments, our results demonstrate that at least two distinct classes of QCP are observable in CeRhIn5, a significant step toward the derivation of a universal phase diagram for QCPs.

6.
Rep Prog Phys ; 80(3): 036501, 2017 03.
Artigo em Inglês | MEDLINE | ID: mdl-28072583

RESUMO

In non-centrosymmetric superconductors, where the crystal structure lacks a centre of inversion, parity is no longer a good quantum number and an electronic antisymmetric spin-orbit coupling (ASOC) is allowed to exist by symmetry. If this ASOC is sufficiently large, it has profound consequences on the superconducting state. For example, it generally leads to a superconducting pairing state which is a mixture of spin-singlet and spin-triplet components. The possibility of such novel pairing states, as well as the potential for observing a variety of unusual behaviors, led to intensive theoretical and experimental investigations. Here we review the experimental and theoretical results for superconducting systems lacking inversion symmetry. Firstly we give a conceptual overview of the key theoretical results. We then review the experimental properties of both strongly and weakly correlated bulk materials, as well as two dimensional systems. Here the focus is on evaluating the effects of ASOC on the superconducting properties and the extent to which there is evidence for singlet-triplet mixing. This is followed by a more detailed overview of theoretical aspects of non-centrosymmetric superconductivity. This includes the effects of the ASOC on the pairing symmetry and the superconducting magnetic response, magneto-electric effects, superconducting finite momentum pairing states, and the potential for non-centrosymmetric superconductors to display topological superconductivity.

7.
Phys Rev Lett ; 118(20): 206601, 2017 May 19.
Artigo em Inglês | MEDLINE | ID: mdl-28581794

RESUMO

We study the effect of hydrostatic pressure on the magnetotransport properties of zirconium pentatelluride. The magnitude of resistivity anomaly gets enhanced with increasing pressure, but the transition temperature T^{*} is insensitive to it up to 2.5 GPa. In the case of H∥b, the quasilinear magnetoresistance decreases drastically from 3300% (9 T) at ambient pressure to 230% (9 T) at 2.5 GPa. Besides, the change of the quantum oscillation phase from topological nontrivial to trivial is revealed around 2 GPa. Both demonstrate that the pressure breaks the accidental Dirac node in ZrTe_{5}. For H∥c, in contrast, subtle changes can be seen in the magnetoresistance and quantum oscillations. In the presence of pressure, ZrTe_{5} evolves from a highly anisotropic to a nearly isotropic electronic system, which accompanies the disruption of the accidental Dirac semimetal state. It supports the assumption that ZrTe_{5} is a semi-3D Dirac system with linear dispersion along two directions and a quadratic one along the third.

8.
Rep Prog Phys ; 79(9): 094503, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27533524

RESUMO

Heavy fermions have served as prototype examples of strongly-correlated electron systems. The occurrence of unconventional superconductivity in close proximity to the electronic instabilities associated with various degrees of freedom points to an intricate relationship between superconductivity and other electronic states, which is unique but also shares some common features with high temperature superconductivity. The magnetic order in heavy fermion compounds can be continuously suppressed by tuning external parameters to a quantum critical point, and the role of quantum criticality in determining the properties of heavy fermion systems is an important unresolved issue. Here we review the recent progress of studies on Ce based heavy fermion superconductors, with an emphasis on the superconductivity emerging on the edge of magnetic and charge instabilities as well as the quantum phase transitions which occur by tuning different parameters, such as pressure, magnetic field and doping. We discuss systems where multiple quantum critical points occur and whether they can be classified in a unified manner, in particular in terms of the evolution of the Fermi surface topology.

9.
Phys Rev Lett ; 117(2): 027001, 2016 Jul 08.
Artigo em Inglês | MEDLINE | ID: mdl-27447519

RESUMO

The nature of the pairing states of superconducting LaNiC_{2} and LaNiGa_{2} has to date remained a puzzling question. Broken time reversal symmetry has been observed in both compounds and a group theoretical analysis implies a nonunitary triplet pairing state. However, all the allowed nonunitary triplet states have nodal gap functions but most thermodynamic and NMR measurements indicate fully gapped superconductivity in LaNiC_{2}. Here we probe the gap symmetry of LaNiGa_{2} by measuring the London penetration depth, specific heat, and upper critical field. These measurements demonstrate two-gap nodeless superconductivity in LaNiGa_{2}, suggesting that this is a common feature of both compounds. These results allow us to propose a novel triplet superconducting state, where the pairing occurs between electrons of the same spin, but on different orbitals. In this case the superconducting wave function has a triplet spin component but isotropic even parity gap symmetry, yet the overall wave function remains antisymmetric under particle exchange. This model leads to a nodeless two-gap superconducting state which breaks time reversal symmetry, and therefore accounts well for the seemingly contradictory experimental results.

10.
Phys Rev Lett ; 114(14): 146403, 2015 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-25910144

RESUMO

We investigated the electrical resistivity and heat capacity of 1% Cd-doped CeIrIn_{5} under hydrostatic pressure up to 2.7 GPa, near where long-range antiferromagnetic order is suppressed and bulk superconductivity suddenly reemerges. The pressure-induced T_{c} is close to that of pristine CeIrIn_{5} at 2.7 GPa, and no signatures of a quantum critical point under pressure support a local origin of the antiferromagnetic moments in Cd-CeIrIn_{5} at ambient pressure. Similarities between superconductors CeIrIn_{5} and CeCoIn_{5} in response to Cd substitutions suggest a common magnetic mechanism.

11.
Nature ; 457(7229): 565-8, 2009 Jan 29.
Artigo em Inglês | MEDLINE | ID: mdl-19177125

RESUMO

Superconductivity was recently observed in iron-arsenic-based compounds with a superconducting transition temperature (T(c)) as high as 56 K, naturally raising comparisons with the high-T(c) copper oxides. The copper oxides have layered crystal structures with quasi-two-dimensional electronic properties, which led to speculation that reduced dimensionality (that is, extreme anisotropy) is a necessary prerequisite for superconductivity at temperatures above 40 K (refs 8, 9). Early work on the iron-arsenic compounds seemed to support this view. Here we report measurements of the electrical resistivity in single crystals of (Ba,K)Fe(2)As(2) in a magnetic field up to 60 T. We find that the superconducting properties are in fact quite isotropic, being rather independent of the direction of the applied magnetic fields at low temperature. Such behaviour is strikingly different from all previously known layered superconductors, and indicates that reduced dimensionality in these compounds is not a prerequisite for 'high-temperature' superconductivity. We suggest that this situation arises because of the underlying electronic structure of the iron-arsenic compounds, which appears to be much more three dimensional than that of the copper oxides. Extrapolations of low-field single-crystal data incorrectly suggest a high anisotropy and a greatly exaggerated zero-temperature upper critical field.

12.
Nature ; 440(7080): 65-8, 2006 Mar 02.
Artigo em Inglês | MEDLINE | ID: mdl-16511490

RESUMO

With only a few exceptions that are well understood, conventional superconductivity does not coexist with long-range magnetic order (for example, ref. 1). Unconventional superconductivity, on the other hand, develops near a phase boundary separating magnetically ordered and magnetically disordered phases. A maximum in the superconducting transition temperature T(c) develops where this boundary extrapolates to zero Kelvin, suggesting that fluctuations associated with this magnetic quantum-critical point are essential for unconventional superconductivity. Invariably, though, unconventional superconductivity masks the magnetic phase boundary when T < T(c), preventing proof of a magnetic quantum-critical point. Here we report specific-heat measurements of the pressure-tuned unconventional superconductor CeRhIn5 in which we find a line of quantum-phase transitions induced inside the superconducting state by an applied magnetic field. This quantum-critical line separates a phase of coexisting antiferromagnetism and superconductivity from a purely unconventional superconducting phase, and terminates at a quantum tetracritical point where the magnetic field completely suppresses superconductivity. The T --> 0 K magnetic field-pressure phase diagram of CeRhIn5 is well described with a theoretical model developed to explain field-induced magnetism in the high-T(c) copper oxides, but in which a clear delineation of quantum-phase boundaries has not been possible. These experiments establish a common relationship among hidden magnetism, quantum criticality and unconventional superconductivity in copper oxides and heavy-electron systems such as CeRhIn5.

13.
J Phys Condens Matter ; 34(43)2022 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-35977535

RESUMO

We report the discovery of superconductivity in non-centrosymmetric compounds HfNiAl, ZrNiAl, ZrNiGa, and HfPtAl by measuring their electrical transport and thermodynamic properties. HfNiAl, ZrNiAl, and ZrNiGa crystallize in the ZrNiAl-type crystal structure, whereas HfPtAl crystallizes in the HfRhSn-type crystal structure. Superconducting transitions for HfNiAl, ZrNiAl, ZrNiGa, and HfPtAl are observed at 1.0 K, 1.0 K, 0.42 K, and 0.58 K, respectively. Using the Werthamer-Helfand-Hohenberg model, the zero-temperature upper critical fieldsµ0Hc2(0) were estimated to be 0.58 T, 0.24 T, 0.08 T, and 0.34 T for HfNiAl, ZrNiAl, ZrNiGa, and HfPtAl, respectively. The observed jump in electronic heat capacity (ΔCe/γT) across the superconducting transition is 1.3, 1.3, and 1.2 for HfNiAl, ZrNiAl, and HfPtAl, respectively. After the inclusion of the spin-orbit coupling in the band structure calculations, a total of six bands for ZrNiAl, HfPtAl, and ZrNiGa, and eight bands for HfNiAl were found to cross the Fermi level. Spin-orbit coupling induced maximum splitting (ΔEASOC/kBTc) of the electronic bands near the Fermi level was found to be 1697, 517, 1138, and 4230 for HfNiAl, ZrNiAl, ZrNiGa, and HfPtAl, respectively. Large variation of the antisymmetric spin-orbit coupling (ASOC) among these compounds provides a great opportunity to study the effects of ASOC on the superconducting pairing states.

14.
Phys Rev Lett ; 104(2): 027003, 2010 Jan 15.
Artigo em Inglês | MEDLINE | ID: mdl-20366619

RESUMO

We report measurements of quasiparticle relaxation dynamics in the high-temperature superconductor (Ba,K)Fe2As2 in optimally doped, underdoped, and undoped regimes. In the underdoped sample, spin-density wave (SDW) order forms at approximately 85 K, followed by superconductivity at approximately 28 K. We find the emergence of a normal-state order that suppresses SDW at a temperature T{*} approximately 60 K and argue that this normal-state order is a precursor to superconductivity.

15.
Mini Rev Med Chem ; 8(5): 529-37, 2008 May.
Artigo em Inglês | MEDLINE | ID: mdl-18473940

RESUMO

Chemoprevention is presumably one of most effective means to combat prostate cancer (PCa). Patients usually require more than a decade to develop a clinically significant Pca, therefore, an ideal target for chemoprevention. This review will focus on recent findings of a group of naturally occurring chemicals, carotenoids, for potential use in reducing PCa risk.


Assuntos
Carotenoides/uso terapêutico , Neoplasias da Próstata/prevenção & controle , Antioxidantes/química , Antioxidantes/uso terapêutico , Carotenoides/química , Humanos , Masculino , Fatores de Risco
16.
Nat Commun ; 9(1): 4622, 2018 11 05.
Artigo em Inglês | MEDLINE | ID: mdl-30397192

RESUMO

The manifestation of Weyl fermions in strongly correlated electron systems is of particular interest. We report evidence for Weyl fermions in the heavy fermion semimetal YbPtBi from electronic structure calculations, angle-resolved photoemission spectroscopy, magnetotransport and calorimetric measurements. At elevated temperatures where 4f-electrons are localized, there are triply degenerate points, yielding Weyl nodes in applied magnetic fields. These are revealed by a contribution from the chiral anomaly in the magnetotransport, which at low temperatures becomes negligible due to the influence of electronic correlations. Instead, Weyl fermions are inferred from the topological Hall effect, which provides evidence for a Berry curvature, and a cubic temperature dependence of the specific heat, as expected from the linear dispersion near the Weyl nodes. The results suggest that YbPtBi is a Weyl heavy fermion semimetal, where the Kondo interaction renormalizes the bands hosting Weyl points. These findings open up an opportunity to explore the interplay between topology and strong electronic correlations.

17.
J Phys Condens Matter ; 30(34): 345701, 2018 Aug 30.
Artigo em Inglês | MEDLINE | ID: mdl-30010612

RESUMO

We have synthesized high quality single crystals of Sm4Co3Ga16 with gallium flux and investigated its physical properties with electrical resistivity, magnetization and specific-heat measurements. Antiferromagnetic transition below 6.7 K has been detected. No superconducting transitions have been dectected down to 0.5 K from our single crystals. Based on our experimental result, Sm3+ state in Sm4Co3Ga16 is likely well localized, in which stable magnetic moment in its doubly degenerated ground state contributes to the magnetic order with little interference of Kondo type of interaction.

18.
Sci Rep ; 7(1): 7338, 2017 08 04.
Artigo em Inglês | MEDLINE | ID: mdl-28779079

RESUMO

We investigated the anisotropic magnetic properties of CePd2As2 by magnetic, thermal and electrical transport studies. X-ray diffraction confirmed the tetragonal ThCr2Si2-type structure and the high-quality of the single crystals. Magnetisation and magnetic susceptibility data taken along the different crystallographic directions evidence a huge crystalline electric field (CEF) induced Ising-type magneto-crystalline anisotropy with a large c-axis moment and a small in-plane moment at low temperature. A detailed CEF analysis based on the magnetic susceptibility data indicates an almost pure |±5/2〉 CEF ground-state doublet with the dominantly |±3/2〉 and the |±1/2〉 doublets at 290 K and 330 K, respectively. At low temperature, we observe a uniaxial antiferromagnetic (AFM) transition at T N = 14.7 K with the crystallographic c-direction being the magnetic easy-axis. The magnetic entropy gain up to T N reaches almost R ln 2 indicating localised 4 f-electron magnetism without significant Kondo-type interactions. Below T N , the application of a magnetic field along the c-axis induces a metamagnetic transition from the AFM to a field-polarised phase at µ 0 H c0 = 0.95 T, exhibiting a text-book example of a spin-flip transition as anticipated for an Ising-type AFM.

19.
Sci Rep ; 7(1): 17157, 2017 12 07.
Artigo em Inglês | MEDLINE | ID: mdl-29214992

RESUMO

A combined resistivity and hard x-ray diffraction study of superconductivity and charge ordering in Ir Ir1-xPtxTe2, as a function of Pt substitution and externally applied hydrostatic pressure, is presented. Experiments are focused on samples near the critical composition x c ~ 0.045 where competition and switching between charge order and superconductivity is established. We show that charge order as a function of pressure in Ir0.95Pt0.05Te2 is preempted - and hence triggered - by a structural transition. Charge ordering appears uniaxially along the short crystallographic (1, 0, 1) domain axis with a (1/5, 0, 1/5) modulation. Based on these results we draw a charge-order phase diagram and discuss the relation between stripe ordering and superconductivity.

20.
J Phys Condens Matter ; 27(22): 225701, 2015 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-25988300

RESUMO

We study the superconducting pairing states of NdO(1-x)F(x)BiS2 (x = 0.3 and 0.5) by measuring the magnetic penetration depth Δλ(T) using the tunnel-diode-oscillator (TDO) technique. An upturn is observed in Δλ(T) as well as the magnetic susceptibility χ(T) in the low-temperature limit, which is attributed to the paramagnetism of Nd ions. After subtracting the paramagnetic contributions, the penetration depth Δλ(T) follows an exponential-type temperature dependence at T ≪ T(c), providing evidence of nodeless superconductivity for NdO(1-x)F(x)BiS2. This is further supported by the analyses of superfluid density ρ(s)(T), which can be well described by a BCS model with an energy gap of Δ(0) ∼ 2.15 k(B)T(c).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA