Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 76
Filtrar
1.
Environ Res ; 252(Pt 3): 118978, 2024 Jul 01.
Artigo em Inglês | MEDLINE | ID: mdl-38704012

RESUMO

Tea polyphenols (TPs), as a kind of derivatives from tea waste, were employed as a novel environmentally friendly bio-based sludge conditioner in this study. The findings showed that when TPs were applied at a dosage of 300 mg g-1 DS, the sludge CST0/CST ratio significantly increased to 1.90. pH regulation was found to markedly affect the dewatering efficiency of sludge. At pH 4, the CST0/CST rose to 2.86, coupled with a reduction in the specific resistance to filtration (SRF) from 6.69 × 1013 m kg-1 to 1.43 × 1013 m kg-1 and a decrease in the moisture content (MC) from 90.57% to 68.75%. TPs formed complexes and precipitated sludge proteins, as demonstrated by changes in the extracellular polymeric substances (EPS), viscosity, zeta potential, and particles size distribution. The optimization significance of acidification treatment on sludge structure disintegration, the interaction of TPs with EPS, and the removal of sludge proteins were elucidated. The research provided an ideal approach for the integrated utilization of biomass resources from tea waste and highlighted the potential application of TPs as an environmentally friendly conditioner in sludge dewatering.


Assuntos
Polifenóis , Esgotos , Chá , Polifenóis/química , Esgotos/química , Concentração de Íons de Hidrogênio , Chá/química , Extratos Vegetais/química , Eliminação de Resíduos Líquidos/métodos
2.
Environ Res ; 232: 116347, 2023 Sep 01.
Artigo em Inglês | MEDLINE | ID: mdl-37290618

RESUMO

Sludge stabilization was affected by solid content during autothermal thermophilic aerobic digestion (ATAD). Thermal hydrolysis pretreatment (THP) could alleviate the issues of high viscosity, slow solubilization and low ATAD efficiency caused by increased solid content. The influence of THP on the stabilization of sludge with different solid contents (5.24%-17.14%) during ATAD was investigated in this study. The results demonstrated that stabilization was achieved with volatile solid (VS) removal of 39.0%-40.4% after 7-9 days of ATAD for sludge with solid content of 5.24%-17.14%. The solubilization of sludge with different solid contents reached 40.1%-45.0% after THP. The rheological analysis indicated that the apparent viscosity of sludge was obviously reduced after THP at different solid contents. The increase in fluorescence intensity of fulvic acid-like organics, soluble microbial by-products and humic acid-like organics in the supernatant after THP and the decrease in fluorescence intensity of soluble microbial by-products after ATAD were detected by excitation emission matrix (EEM). The molecular weight (MW) distribution in the supernatant elucidated that the proportion of 50 kDa < MW < 100 kDa increased to 16%-34% after THP and the proportion of 10 kDa < MW < 50 kDa decreased to 8%-24% after ATAD. High throughput sequencing showed that the dominant bacterial genera shifted from Acinetobacter, Defluviicoccus and Norank_f__norank_o__PeM15 to Sphaerobacter and Bacillus during ATAD. This work revealed that solid content of 13%-17% was appropriate for efficient ATAD and rapid stabilization under THP.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Esgotos/microbiologia , Hidrólise , Eliminação de Resíduos Líquidos/métodos , Reatores Biológicos/microbiologia , Digestão
3.
J Environ Manage ; 327: 116899, 2023 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-36459781

RESUMO

Anaerobic digestion (AD) is a promising technology to treat waste-activated sludge, previous study proved that methane production could be enhanced with the addition of choline, this work aimed to solve the problem of rapid biodegradability of choline in the AD process by changing its dosing method. With 0.75 g/L as the optimal choline dosing concentration, experimental results showed that successive choline dosing during the first 3-6 days of AD (experimental groups, EGs) performed better than the single dosing. The accumulative biogas production in EGs was increased by 35.55-36.73%, which could be caused by the simultaneous promotion of hydrolysis-acidification and methanogenesis processes. Especially, the electron exchange capacity of digested sludge in EGs was increased by 16.71-34.58%. In addition, the surface Gibbs free energy (△GSL) of sludge in EGs was 105.51-172.21% higher (corresponding to stronger hydrophilicity and repulsion), which might help disperse sludge flocs and improve mass transfer efficiency, and the △GSL values were positively correlated with the accumulative methane production (R2 = 0.7029). Microbiological analysis showed that microbial communities in EGs were richer and Methanosaeta was regarded as the dominant species with 15.93-30.08% higher relative abundance with choline addition. According to Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis, EGs were found to be more active in metabolism clusters. Collectively, these findings demonstrated that successive choline dosing during the first 3-6 days is an effective and novel method to enhance methane production in AD process.


Assuntos
Microbiota , Esgotos , Anaerobiose , Eliminação de Resíduos Líquidos/métodos , Metano , Reatores Biológicos/microbiologia , Interações Hidrofóbicas e Hidrofílicas
4.
J Environ Manage ; 344: 118430, 2023 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-37348300

RESUMO

In this study, an environmentally friendly alternative was developed using catalytic ozonation by sludge-derived biochar loaded with bimetallic Fe/Ce (O3/SBC-FeCe) for enhanced sludge dewatering. The results indicated that the lowest capillary suction time (CST) of 20.9 s and water content of dewatered sludge cake (Wc) of 64.09% were achieved under the dosage of 40 mg O3/g dry solids (DS) and 0.4 g SBC-FeCe/g DS which were considered as the optimum condition. In view of excellent electron exchanging capacity of SBC-FeCe with rich Lewis acid sites and conversions of valence sates of Fe and Ce, more O3 were decomposed into reactive oxygen species under the catalytic action of SBC-FeCe, which strengthened oxidizing capacity. Enhanced oxidation rendered sludge cells inactivation and compact network structure rupture releasing intracellular water and organic substances. Subsequently, hydrophilic organic matters were attacked and eliminated lessening sludge viscosity and colloidal forces and intensifying hydrophobicity and flowability. In addition, changes of sludge morphology suggested that sludge roughness was alleviated, structural strength and compressibility were raised and porous and retiform structure was constructed providing channels for water outflow by adding skeleton builder of SBC-FeCe. Overall, the synergistic interaction of strengthened oxidation and skeleton construction improved sludge dewaterability.


Assuntos
Ozônio , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Oxirredução , Água
5.
Entropy (Basel) ; 25(8)2023 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-37628267

RESUMO

It is generally acknowledged that the stability evaluation of surrounding rock denotes nonlinear complex system engineering. In order to accurately and quantitatively assess the safety states of surrounding rock and provide a scientific basis for the prevention and control of surrounding rock stability, the analysis method of the synergetic theory of information entropy using the failure approach index has been proposed. By means of deriving the general relationship between the total two-dimensional plastic shear strain and the total three-dimensional plastic shear strain and obtaining the numerical limit analysis step of the plastic shear strain, the threshold value of the ultimate plastic shear strain can be determined, which has provided the key criterion for the calculation of the information entropy based on the failure approach index. In addition, combining with the synergetic theory of the principle of maximum information entropy, the evolution equation of the excavation step and information entropy based on the failure approach index of the surrounding rock system in underground mining space are established, and the equations of the general solution and particular solution as well as the expression of the destabilizing excavation step are given. To account for this, the method is applied to analyze the failure states of the floor surrounding rock after the mining of the 71 coal seam in Xutuan Coal Mine and involve the disturbance effect and stability control method of the underlying 72 coal seam roof from the macroscopic and microscopic aspects. Consequently, the validity of the analysis method of synergetic theory of information entropy based on the failure approach index has been verified, which presents an updated approach for the stability evaluation of surrounding rock systems that is of satisfactory capability and value in engineering applications.

6.
J Environ Manage ; 318: 115615, 2022 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-35772274

RESUMO

Autothermal thermophilic aerobic digestion (ATAD) is a rapid biological treatment technology for sludge stabilization. To improve digestion efficiency and shorten stabilization time, thermal hydrolysis pretreatment was employed before ATAD of high solid sludge. The results showed that accelerated stabilization of high solid sludge (total solid = 10.1%) was achieved by thermal hydrolysis pretreatment with volatile solid removal efficiency of 40.3% after 8 days of ATAD, 11 days earlier than unpretreated sludge. The enhanced release and hydrolysis of intracellular organics resulted in a solubilization degree of 45.3%. The reduced sludge viscosity and improved fluidity after thermal hydrolysis facilitated mixing, aeration and organics degradation during ATAD. Excitation emission matrix analysis indicated that the fluorescence intensity of soluble microbial byproduct and tyrosine-like protein increased markedly after thermal hydrolysis and decreased after ATAD. The proportion of high molecular weight (MW > 10 kDa) substances in the supernatant increased significantly after thermal hydrolysis, while the low MW (MW < 1 kDa) substances decreased after ATAD. The significant difference in microbial composition between the pretreatment and control groups elucidated the accelerated sludge stabilization under thermal hydrolysis. This work provides an efficient and practical strategy to achieve rapid stabilization of high solid sludge.


Assuntos
Esgotos , Eliminação de Resíduos Líquidos , Reatores Biológicos , Digestão , Hidrólise , Eliminação de Resíduos Líquidos/métodos
7.
Environ Res ; 195: 110783, 2021 04.
Artigo em Inglês | MEDLINE | ID: mdl-33497683

RESUMO

Sewage sludge is one of the sinks for PAHs accumulation and concerns are growing regarding the environmental risk of the discharge of PAHs in waste activated sludge (WAS) as a major byproduct of sewage treatment. Here, we evaluated the effectiveness of ozone treatment to eliminate the 16 priority PAHs in WAS. The PAHs removal efficiency increased with ozone dosage and was strongly pH dependent. Even at ozone dosage of 40 mg O3·g-1, the PAHs removal efficiency at pH 9.0 (44.5%) was significantly higher than that observed at pH 5.0 and 200 mg O3·g-1 (41.7%). The pH-dependent elimination behavior of PAHs was attributed to the varying yield of hydroxyl radicals (OH) and degree of sludge disintegration (R2 = 0.88-0.92). Over 96% of the PAHs were in the particulate flocs (PF) phase, while the fraction bound to the freely dissolved (FS) and dissolved and colloidal (DC) matters was negligible, indicating the need of WAS disintegration during ozonation to make PAHs more accessible to O3 molecules and OH to initiate oxidation reactions. Failure of the three-compartment model to describe the PAHs sorption behavior in sludge matrix during ozonation implied that oxidation reaction occurred simultaneously with the partitioning of PAHs from PS to DC/FS fraction. Lastly, the results of the intermittent ozonation experiment demonstrated the interference of soluble organic compounds during PAHs degradation, particularly proteins and humic substances, as O3 and OH scavengers. At ozone dosage of 120 mg O3·g-1 (pH 9.0), the PAHs removal efficiency was improved by 19.5% by intermittent ozonation, as compared to continuous ozonation under the same conditions.


Assuntos
Ozônio , Hidrocarbonetos Policíclicos Aromáticos , Substâncias Húmicas/análise , Oxirredução , Esgotos
8.
J Environ Manage ; 296: 113204, 2021 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-34243089

RESUMO

Fe2+-activated persulfate process has been introduced into sludge conditioning currently, however the key sludge properties characteristics are worthwhile comprehensively considering for the engineering implementation and management. The results indicated that both the optimal dosages of persulfate and Fe2+ were 0.6 mmol/gTS for sludge dewaterability amelioration, and the reduction efficiencies of capillary suction time (CST), specific resistance of filtration (SRF), and water content (Wc) of dewatered sludge cake reached to 90.5%, 97.2%, and 22.4%, respectively. Significantly, the persulfate and Fe2+ exerted distinctive roles in the conditioning process. The increased persulfate could promote the oxidatively disintegrated effect on sludge flocs, rendering the decrease of particle size. With the oxidative decomposition of the negatively charged biopolymers, sludge zeta potential rose gradually. However, Fe2+ contributed to more persulfate activation to generate free radicals, and the produced Fe3+ could further electrically neutralize the broken sludge fragments. The core mechanism of Fe2+-activated persulfate conditioning is "destroying and re-building" of sludge flocs. Noteworthily, EPS protein was oxidatively degraded more preferentially than EPS polysaccharide, and the decrease of the α-helix content of EPS protein was conducive to the enhancement of sludge dewaterability. Furthermore, the hydrophilic functional groups reduced clearly and element chemical states on sludge flocs altered pronouncedly, also the destroyed structure and microchannel facilitated the flowability of water. These findings provide theoretical and technical support for the practical engineering implementation of the Fe2+-activated persulfate conditioning process.


Assuntos
Filtração , Esgotos , Biopolímeros , Oxirredução , Água
9.
J Environ Manage ; 284: 112020, 2021 Apr 15.
Artigo em Inglês | MEDLINE | ID: mdl-33508699

RESUMO

Sludge dewatering is necessary to reduce the volume of sludge for cost-effective transport and ultimate disposal. In this study, a novel combined chemical conditioning process was proposed to improve sludge dewatering performance in which sludge flocs were destructed by sodium dichloroisocyanurate (DCCNa) and re-flocculated by Al2(SO4)3 and the mechanism was elucidated. The results showed that sludge capillary suction time (CST) dropped to 15.4 s and moisture content of dewatered sludge cake (Mc) deceased to 71.01% respectively, after the application of combined conditioning with the optimal dosage of 200 mg DCCNa/g dry solids (DS) and 80 mg Al2(SO4)3/g DS. With chemical conditioning, sludge physicochemical properties were greatly changed. With the DCCNa application, the percentage of low-molecular-weight substances in soluble extracellular polymeric substances (S-EPS) increased. Also, the sludge zeta potential dropped from -16.85 mV to -25.45 mV and the median particle size (D50) decreased from 54.1 µm to 51.6 µm. However, the subsequent conditioning by Al2(SO4)3 dosing not only led to an increment of 18% in the portion of macromolecules in S-EPS, but also increased the zeta potential and D50 to -10.74 mV and 53.2 µm, respectively. The bound water content in sludge declined from 2.92 g/g DS to 1.98 g/g DS after combined conditioning. We concluded that DCCNa disintegrated the sludge flocs and microbial cells leading to the release of bound water, fine particles and organic substances with negative charge, and the fine colloidal particles can be flocculated into large dense aggregations with the dosing of Al2(SO4)3. In summary, the proposed combined conditioning provided a highly effective and environmental friendly approach to improve the sludge dewatering performance.


Assuntos
Esgotos , Triazinas , Tamanho da Partícula , Eliminação de Resíduos Líquidos , Água
10.
J Environ Manage ; 297: 113342, 2021 Nov 01.
Artigo em Inglês | MEDLINE | ID: mdl-34314959

RESUMO

Sludge dewatering, as one of the most important steps of sludge treatment, can facilitate transportation and improve disposal efficiency by reducing the volume of sludge. This study investigated the effects of electrolysis-activated persulfate oxidation on improving sludge dewaterability. The results indicated that the sludge capillary suction time (CST) and water content of dewatered sludge cake (Wc) reduced from 93.7 s and 87.8% to 9.7 s and 68.3% respectively at the optimized process parameters: electrolysis voltage of 40 V, electrolysis time of 20 min, and 1.2 mmol/g TS S2O82-. Correlation analysis revealed that the enhancement of sludge dewaterability was closely associated with the increased floc size and zeta potential, decreased protein content in three-layers extracellular polymeric substances (EPS) and viscosity (R = -0.868, p = 0.002; R = -0.703, p = 0.035; R ≥ 0.961, p < 0.001; R = 0.949, p < 0.001). Four protein fluorescence regions in EPS were analyzed by three-dimensional excitation-emission matrix parallel factor (3D-EEM-PARAFAC). The protein secondary structure was changed after the treatment, and the reduction of α-helix/(ß-sheet + random coil) indicated that more hydrophobic sites were exposed. Analysis by X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and rheological test demonstrated that the hydrophilic functional groups of the sludge were decreased and the sludge mobility was significantly enhanced after the treatment with electrolysis-activated persulfate oxidation. Moreover, bound water was converted to free water during SO4·- and ·OH generated by electrolysis-activated persulfate degraded EPS and attacked sludge cells. Meanwhile, scanning electron microscopy (SEM) images revealed that the treated sludge formed porous channel structures, which promoted the flowability of the water. These findings provide a new insight based on electrolysis-activated persulfate oxidation in sludge treatment for enhancing sludge dewaterability.


Assuntos
Eletrólise , Esgotos , Oxirredução , Viscosidade , Eliminação de Resíduos Líquidos , Água
11.
Environ Technol ; 35(21-24): 2685-91, 2014.
Artigo em Inglês | MEDLINE | ID: mdl-25176302

RESUMO

Activated carbon (AC) from sludge is one potential solution for sewage sludge disposal, while the drying sludge is cost and time consuming for preparation. AC preparation from the wet sludge with electrochemical-NaClO activation was studied in this work. Three pretreatment processes, i.e. chemical activation, electrolysis and electrochemical-reagent reaction, were introduced to improve the sludge-derived AC properties, and the optimum dosage of reagent was tested from the 0.1:1 to 1:1 (mass rate, reagent:dried sludge). It was shown that the electrochemical-NaClO preparation is the best method under the test conditions, in which AC has the maximum Brunauer, Emmett and Teller area of 436 m²/g at a mass ratio of 0.7. Extracellular polymeric substances in sludge can be disintegrated by electrochemical-NaClO pretreatment, with a disintegration degree of more than 45%. The percentage of carbon decreased from 34.16 to 8.81 after treated by electrochemical-NaClO activation. Fourier transform infrared spectra showed that a strong C-Cl stretching was formed in electrochemical-NaClO prepared AC. The maximum adsorption capacity of AC reaches 109 mg/g on MB adsorption experiment at pH 10 and can be repeated for three times with high removal efficiency after regeneration.


Assuntos
Carbono/química , Esgotos/química , Hipoclorito de Sódio/química , Adsorção , Biopolímeros/química , Eletroquímica , Azul de Metileno/química , Porosidade , Cloreto de Potássio/química , Propriedades de Superfície , Poluentes Químicos da Água/química
12.
Sci Total Environ ; 912: 168605, 2024 Feb 20.
Artigo em Inglês | MEDLINE | ID: mdl-37989393

RESUMO

Large amounts of waste activated sludge (WAS) as a by-product generated from the biological treatment in wastewater treatment plants (WWTPs) is of high moisture content (MC), organic pollutants, heavy metals and pathogenic bacteria, it may cause serious environmental ecological risk without appropriate disposal. More than one half of the total operation cost is accounted for sludge disposal in a WWTP. Dewatering is an essential and important step during the sludge treatment and disposal process for it could efficiently reduce its volume, and be beneficial to the subsequent treatment and disposal of sludge. However, sludge should be conditioned before mechanical dewatering because of its high hydrophilicity. In this work, it presented a comprehensive review on sludge dewatering including summarizing the dewaterability measurement indexes, affecting factors, conditioning technologies, the improvement mechanisms. Finally, based on the eventual disposal and low carbon emission target, the implications and perspectives development of sludge conditioning were discussed. Based on the above discussion, there is no unified theoretical insight of the improvement mechanism of sludge dewaterability. In addition, the relationship between the microstructure of organic matters in sludge floc and the dewaterability should be deepened. Especially, how to choose the optimal conditioning technology for sludge dewatering lies in the physical and chemical properties of sludge, however, the carbon emission of the conditioning and dewatering process also needs to be considered. Accordingly, green, low-cost and organic conditioning agents are the direction of future research, and the establishment of automatic operating system and real-time evaluation index system is the key challenge.


Assuntos
Metais Pesados , Esgotos , Esgotos/química , Eliminação de Resíduos Líquidos , Água/química , Carbono
13.
Biomimetics (Basel) ; 9(7)2024 Jun 28.
Artigo em Inglês | MEDLINE | ID: mdl-39056835

RESUMO

In general, the design of a safe and rational laneway support scheme signifies a crucial prerequisite for ensuring the security and efficiency of mining exploitation in mines. Nevertheless, the conventional empirical support system for mining laneways faces challenges in assessing the rationality of support methods, which can compromise the safety and reliability of the laneways. To address this issue, the safety factor was incorporated into research on laneway support, and a safety evaluation method for laneway support in line with the safety factor was established. In light of the data from a specific iron mine laneway in central China, the CRITIC method was employed to preprocess the sample data. Going one step further, a Bayesian algorithm was utilized to optimize the hyperparameters of the CatBoost model, followed by proposing a prediction model based on the BO-CatBoost model for evaluating laneway safety factors of plain shotcrete support. Furthermore, the performance indexes, such as the root mean square error (RMSE), the mean absolute error (MAE), the correlation coefficient (R2), the variance accounts for (VAF), and the a-20 index, were determined to examine the predictive performance of each proposed model. In contrast to the other models, the BO-CatBoost model demonstrated the optimal predictive output item for safety factors with the lowest RMSE and MAE, the largest R2 and VAF, and an appropriate a-20 index value of 0.5688, 0.4074, 0.9553, 95.25%, and 0.9167 in the test set, respectively. Therefore, the BO-CatBoost model was proven to be the most appropriate machine learning method that can more accurately predict the safety factor, which will provide a novel approach for optimizing laneway support design and laneway safety evaluation.

14.
J Hazard Mater ; 465: 133144, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38056251

RESUMO

Over the past decade or so, microplastics (MPs) have received increasing attention due to their ubiquity and potential risk to the environment. Waste plastics usually end up in landfills. These plastics in landfills undergo physical compression, chemical oxidation, and biological decomposition, breaking down into MPs. As a result, landfill leachate stores large amounts of MPs, which can negatively impact the surrounding soil and water environment. However, not enough attention has been given to the occurrence and removal of MPs in landfill leachate. This lack of knowledge has led to landfills being an underestimated source of microplastics. In order to fill this knowledge gap, this paper collects relevant literature on MPs in landfill leachate from domestic and international sources, systematically summarizes their presence within Asia and Europe, assesses the impacts of landfill leachate on MPs in the adjacent environment, and particularly discusses the possible ecotoxicological effects of MPs in leachate. We found high levels of MPs in the soil and water around informal landfills, and the MPs themselves and the toxic substances they carry can have toxic effects on organisms. In addition, this paper summarizes the potential impact of MPs on the biochemical treatment stage of leachate, finds that the effects of MPs on the biochemical treatment stage and membrane filtration are more significant, and proposes some novel processes for MPs removal from leachate. This analysis contributes to the removal of MPs from leachate. This study is the first comprehensive review of the occurrence, environmental impact, and removal of MPs in leachate from landfills in Asia and Europe. It offers a comprehensive theoretical reference for the field, providing invaluable insights.

15.
J Hazard Mater ; 479: 135603, 2024 Nov 05.
Artigo em Inglês | MEDLINE | ID: mdl-39236545

RESUMO

Aggregation of antiviral drugs (ATVs) in waste activated sludge (WAS) poses considerable environmental risk, so it is crucial to understand the behavior of these agents during WAS treatment. This study investigated the effects of ritonavir (RIT), an ATV used to treat human immunodeficiency virus infection and coronavirus disease 2019, on anaerobic digestion (AD) of WAS to reveal the mechanisms by which it interferes with anaerobic flora. The dosage influence results showed that methane production in AD of WAS decreased by 46.56 % when RIT concentration was increased to 1000 µg/kg total suspended solids (TSS). The AD staging test revealed that RIT mainly stimulated microbial synthesis of the extracellular polymeric substance (EPS), limiting organic matter solubilization. At 500 µg/kg TSS, RIT decreased CHO and CHON levels in dissolved organic matter by 23.12 % and 56.68 %, respectively, significantly reducing substrate availability to microorganisms. Metagenomic analysis of microbial functional gene sets revealed that RIT had greater inhibitory effects on protein and amino acid metabolism than on carbohydrate metabolism. Under RIT stress, methanogens switched from hydrogenotrophic and acetotrophic methanogenesis to methylotrophic and acetotrophic methanogenesis.


Assuntos
Antivirais , Metagenômica , Metano , Ritonavir , Esgotos , Anaerobiose , Antivirais/farmacologia , Esgotos/microbiologia , Metano/metabolismo , Tratamento Farmacológico da COVID-19 , Reatores Biológicos
16.
Food Chem ; 464(Pt 1): 141645, 2024 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-39426263

RESUMO

The green and sustainable production of lactic acid via photocatalytic conversion of biomass-derived sugars is highly significant owing to its enhanced efficiency and reduced energy requirements. Consequently, the investigation has engineered a metal-free photocatalyst (NCDs/CCN), consisting of N-doped carbon dots (NCDs) and ultrathin carbon nitride (CCN). This catalyst has an enhanced light absorption range, facilitating a marked acceleration in the separation rate of photogenerated carriers. It has demonstrated the capability to achieve a lactic acid yield of up to 87.6 % in just 90 min with a mere 20 mg catalyst concentration in a xylose-alkali system. Electron Paramagnetic Resonance (EPR) and quenching experiments indicate that superoxide radicals (·O2-) are the primary oxidizing active species in the photocatalytic system, followed by h+, ·OH, and 1O2. DFT analysis suggests nitrogen doping enhances interaction with xylose, lowering adsorption energy and accelerating lactic acid generation, thus improving economic feasibility and sustainability.

17.
Sci Total Environ ; 900: 165894, 2023 Nov 20.
Artigo em Inglês | MEDLINE | ID: mdl-37524176

RESUMO

Leachate from Municipal Solid Waste (MSW) incineration plants contains multiple antibiotics. However, current knowledge of antibiotics in such leachate is very limited compared to landfill leachate. In this study, the distribution, removal and ecological risks of 8 sulfonamides (SAs), 4 quinolones (FQs), and 4 macrolides (MLs) antibiotics in leachate from three MSW incineration plants in Shanghai were investigated. The results showed that 12 types of target antibiotics were detected at high concentrations (7737.3-13,758.7 ng/L) in the fresh leachate, exceeding the concentrations reported for landfill leachate. FQs were the dominant antibiotics detected in all three fresh leachates, accounting for >60 % of the total detected concentrations. The typical "anaerobic-anoxic/aerobic-anoxic/aerobic-ultrafiltration" treatment process removed the target antibiotics effectively (89.0 %-93.4 %), of which the anaerobic unit and the primary anoxic/aerobic unit were the most important antibiotic removal units. Biodegradation was considered to be the dominant removal mechanism, removing 78.11 %-92.37 % of antibiotics, whereas sludge adsorption only removed 1.02 %-10.89 %. Antibiotic removal was significantly correlated with leachate COD, pH, TN, and NH3-N, indicating that they may be influential factors for antibiotic removal. Ecological risk assessment revealed that ofloxacin (OFX) and enrofloxacin (EFX) in the treated leachate still posed high risks to algae and crustaceans. This research provides insights into the fate of antibiotics in leachate.


Assuntos
Eliminação de Resíduos , Poluentes Químicos da Água , Resíduos Sólidos/análise , Incineração , Antibacterianos , Poluentes Químicos da Água/análise , China , Medição de Risco , Instalações de Eliminação de Resíduos , Eliminação de Resíduos/métodos
18.
Water Res ; 220: 118704, 2022 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-35667172

RESUMO

Sludge dewatering is an essential process for reduction of sludge volume to decrease cost of ultimate disposal. In this study, a novel method using activated carbon (AC) strengthening electrochemical (EC) treatment (EC/AC) was adopted to improve greatly sludge dewaterability. It was shown that capillary suction time (CST) and water content of dewatered sludge cake (Wc) were reduced to 55.9 ± 1.24 s and 64.3 ± 1.23%, respectively, under the optimal conditions of EC voltage 20 V, EC time 30 min and 0.2 g/g dry solid (DS) AC. AC with rich functional groups as "the third electrode" intensified electrooxidation by forming multiple microelectrodes and electron transfer capacity and conductivity of sludge were strengthened by AC in EC system, which were illustrated by electrochemical analysis. It could be found that zeta potential and particle size were increased and surface roughness was reduced after EC/AC treatment intensifying sludge hydrophobicity. Form the results of rheological behaviors of sludge, flowability was strengthened and viscosity was weakened under the conditioning of EC/AC. Besides, colloidal force and gel-like network strength were lessened, which was also verified by organic matters and percentage of inviable cells. At the same time, intracellular matters were released and degraded and bound water was released converting into free water. In addition, sludge compressibility and structural strength were increased and porous structure was formed facilitating water outflow via addition of mesoporous AC as skeleton builder, which eventually led to an improved separation efficiency of solid-water and sludge dewaterability. The results of heavy metals suggested that sludge cake after EC/AC treatment was favorable for land application.


Assuntos
Carvão Vegetal , Esgotos , Interações Hidrofóbicas e Hidrofílicas , Oxirredução , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Água/química
19.
Sci Total Environ ; 819: 152015, 2022 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-34843792

RESUMO

Simultaneous removal of polycyclic aromatic hydrocarbons (PAHs) in the process of enhancement of sludge dewaterability via oxidation of hydroxyl radicals (•OH) and flocculation of Fe3+ by Fe2+-catalyzing O3 were investigated as a novel research focus. The results showed that capillary suction time (CST) and water content of dewatered sludge cake (Wc) were reduced from 57.9 s and 85.1% to 13.6 s and 69.65% under the optimum usage of 60 mg/g dry solids (DS) O3 and 80 mg/g DS FeSO4, respectively. The relevant dewatering mechanism of Fe2+-catalyzing O3 treatment was elucidated. It was found that extracellular polymeric substances-bound (EPS-bound) and intracellular water was dramatically released through destroying sludge cells and EPS gel-like structure by produced •OH. In addition, the results of X-ray photoelectron spectroscopy (XPS), Fourier transform infrared (FTIR) and 13C NMR spectroscopy revealed that •OH oxidized and mineralized hydrophilic organic matters intensifying hydrophobicity of sludge surface. Moreover, Fe3+ generated by oxidation of Fe2+ agglomerated fragmented fine particles into large aggregates and decreased exposure of hydrophilic sites by neutralizing negative charge, which promoted water-solids separation. Meanwhile, sludge surface roughness was decreased which was determined by material type upright confocal laser microscope (CLM). As a consequence, •OH and Fe3+ were mainly responsible for enhancement of sludge dewaterability. Moreover, more than 40% of removal rate of PAHs was accomplished by Fe2+-catalyzed O3 treatment mitigating the environmental risks of PAHs spread.


Assuntos
Hidrocarbonetos Policíclicos Aromáticos , Esgotos , Matriz Extracelular de Substâncias Poliméricas , Oxirredução , Esgotos/química , Eliminação de Resíduos Líquidos/métodos , Água/química
20.
PLoS One ; 17(12): e0279302, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36548279

RESUMO

In general, the ultimate parameter selection method of the failure approach index theory among the three-dimensional problems in geotechnical engineering is unclear in theory, and the symbol convention of the failure approach index in engineering calculation is contrary to the stipulation of the numerical simulation software. Hence, the values of the ultimate plastic shear strain are difficult to determine. To solve this problem, the criterion of positive tension and negative compression and the sequence of the principal stress σ1 ≤ σ2 ≤ σ3 are defined in this paper, and the expression of Mohr-Coulomb yield approach index id deduced. Under the condition of the principal strain sequence ε1 ≤ ε2 ≤ ε3, the formula of the ultimate shear strain is derived using the method of the ultimate strain analysis so as to obtain the simple expression and calculation method of the ultimate plastic shear strain, which has provided the calculation parameters for the three-dimensional ultimate plastic shear strain in the Mohr-Coulomb strain softening model and improved the failure approach index theory. In the light of the aforementioned theory, the ultimate strains of cubic concrete specimens are analyzed, and the obtained ultimate strain values are found consistent with previous research findings, which verifies the correctness and reliability of the ultimate strain analysis method. In addition, it is applied to the quantitative elastic-plastic failure analysis of the section coal pillar in Hengjin coal industry for determining its reasonable retainment width. Consequently, the research results can be embraced as the theoretical basis for the stability analysis of geotechnical materials and exhibits engineering application potential.


Assuntos
Plásticos , Reprodutibilidade dos Testes , Simulação por Computador , Elasticidade , Estresse Mecânico
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA