Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioorg Chem ; 132: 106352, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36682147

RESUMO

Aurora A (Aurora kinase A), a critical regulator of cell mitosis, is frequently overexpressed in many malignant cancers, and has been considered as a promising drug target for cancer therapy. Likewise, Phosphatidylinositol 3-kinase alpha (PI3Kα) is also regarded as one of the most important targets in cancer therapy by mediating the cell growth and angiogenesis of various human cancers. In addition, Bromodomain-containing protein 4 (BRD4) modulates oncogene expressions of Myc, Aurora kinase and various RTKs. Recently, accumulating evidences indicated that hyperactivated or abnormally expressed Aurora A, PI3Kα or BRD4 are closely associated with drug resistance and poor prognosis of non-small cell lung cancer (NSCLC). Hence, simultaneous inhibition of Aurora A, PI3Kα, and BRD4 is expected to be a new strategy for NSCLC therapy. In this study, we performed further structure optimization of 6-(2-amino-1H-benzo[d]imidazole-6-yl)-quinazolin-4(3H) -one based on previous study to obtain a series of derivatives for discovering potential Aurora A, PI3Kα and BRD4 multi-targeted inhibitors. MTT assay showed that most of the newly synthesized compounds exhibited an evident anticancer activity against the NSCLC cells. Among them, the IC50 values of the most potent compound 9a were 0.83, 0.26 and 1.02 µM against A549, HCC827 and H1975 cells, respectively. In addition, 9a markedly inhibited the Aurora A and PI3Kα kinase activities with IC50 values of 10.19 nM and 13.12 nM. Compound 9a induced G2/M phase arrests and apoptosis of HCC827 cells by simultaneous inhibition of Aurora A/PI3K/ BRD4 signaling pathways. Collectively, our studies suggested that 9a might be a potential multi-targeted inhibitor for NSCLC therapy.


Assuntos
Antineoplásicos , Carcinoma Pulmonar de Células não Pequenas , Neoplasias Pulmonares , Humanos , Relação Estrutura-Atividade , Fosfatidilinositol 3-Quinases/metabolismo , Proteínas Nucleares/metabolismo , Carcinoma Pulmonar de Células não Pequenas/tratamento farmacológico , Inibidores de Proteínas Quinases , Aurora Quinase A/metabolismo , Aurora Quinase A/farmacologia , Fatores de Transcrição , Antineoplásicos/química , Proliferação de Células , Imidazóis/farmacologia , Linhagem Celular Tumoral , Ensaios de Seleção de Medicamentos Antitumorais , Estrutura Molecular
2.
Bioorg Chem ; 135: 106484, 2023 06.
Artigo em Inglês | MEDLINE | ID: mdl-36963371

RESUMO

ROR1 and Aurora kinase were overexpressed in various cancers and essential for cell proliferation, survive and metastasis. Pharmaceutical inhibition of ROR1 and Aurora kinase abrogated the activation of downstream signaling and induced cancer cell apoptosis. Hence, ROR1 and Aurora kinase considered as attractive therapeutic targets for the development of anticancer drugs. In the present work, three series of novel 6-(imidazo[1,2-a] pyridin-6-yl)-quinazolin-4(3H)-one derivatives were designed and synthesized via bioisosterism and scaffold-hopping strategies guided by FLF-13, an Aurora kinase inhibitor we discovered earlier. Most of compounds in series 2 and series 3 showed submicromolar to nanomolar inhibitory activity against multiple cancer cell lines. More importantly, compounds 12d and 12f in series 3 showed nanomolar inhibitory activity against all test cancer cells. The most promising compound 12d exhibited potent inhibitory activity against Aurora A and Aurora B with IC50 values of 84.41 nM and 14.09 nM, respectively. Accordingly, compounds 12d induced G2/M phase cell cycle arrest at 24 h and polyploidy at 48 h. It's worth noting that 12d also displayed inhibitory activity against ROR1 and induce cell apoptosis. Furthermore, 12d could significantly inhibit the tumor growth in SH-SY5Y xenograft model with tumor growth inhibitory rate (IR) up to 46.31 % at 10 mg/kg and 52.66 % at 20 mg/kg. Overall, our data suggested that 12d might serve as a promising candidate for the development of therapeutic agents for cancers with aberrant expression of ROR1 and Aurora kinases by simultaneously targeting ROR1 and Aurora kinase.


Assuntos
Antineoplásicos , Neuroblastoma , Humanos , Antineoplásicos/farmacologia , Proliferação de Células , Inibidores de Proteínas Quinases , Linhagem Celular Tumoral , Apoptose , Receptores Órfãos Semelhantes a Receptor Tirosina Quinase/farmacologia
3.
Int J Mol Sci ; 24(7)2023 Apr 06.
Artigo em Inglês | MEDLINE | ID: mdl-37047827

RESUMO

Aberrant expression of the phosphatidylinositol 3-kinase (PI3K) signalling pathway is often associated with tumourigenesis, progression and poor prognosis. Hence, PI3K inhibitors have attracted significant interest for the treatment of cancer. In this study, a series of new 6-(imidazo[1,2-a]pyridin-6-yl)quinazoline derivatives were designed, synthesized and characterized by 1H NMR, 13C NMR and HRMS spectra analyses. In the in vitro anticancer assay, most of the synthetic compounds showed submicromolar inhibitory activity against various tumour cell lines, among which 13k is the most potent compound with IC50 values ranging from 0.09 µΜ to 0.43 µΜ against all the tested cell lines. Moreover, 13k induced cell cycle arrest at G2/M phase and cell apoptosis of HCC827 cells by inhibition of PI3Kα with an IC50 value of 1.94 nM. These results suggested that compound 13k might serve as a lead compound for the development of PI3Kα inhibitor.


Assuntos
Antineoplásicos , Quinazolinas , Quinazolinas/química , Estrutura Molecular , Relação Estrutura-Atividade , Fosfatidilinositol 3-Quinases/metabolismo , Ensaios de Seleção de Medicamentos Antitumorais , Proliferação de Células , Antineoplásicos/química , Linhagem Celular Tumoral , Desenho de Fármacos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA