Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 1.527
Filtrar
1.
Brief Bioinform ; 25(4)2024 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-38888457

RESUMO

Large sample datasets have been regarded as the primary basis for innovative discoveries and the solution to missing heritability in genome-wide association studies. However, their computational complexity cannot consider all comprehensive effects and all polygenic backgrounds, which reduces the effectiveness of large datasets. To address these challenges, we included all effects and polygenic backgrounds in a mixed logistic model for binary traits and compressed four variance components into two. The compressed model combined three computational algorithms to develop an innovative method, called FastBiCmrMLM, for large data analysis. These algorithms were tailored to sample size, computational speed, and reduced memory requirements. To mine additional genes, linkage disequilibrium markers were replaced by bin-based haplotypes, which are analyzed by FastBiCmrMLM, named FastBiCmrMLM-Hap. Simulation studies highlighted the superiority of FastBiCmrMLM over GMMAT, SAIGE and fastGWA-GLMM in identifying dominant, small α (allele substitution effect), and rare variants. In the UK Biobank-scale dataset, we demonstrated that FastBiCmrMLM could detect variants as small as 0.03% and with α ≈ 0. In re-analyses of seven diseases in the WTCCC datasets, 29 candidate genes, with both functional and TWAS evidence, around 36 variants identified only by the new methods, strongly validated the new methods. These methods offer a new way to decipher the genetic architecture of binary traits and address the challenges outlined above.


Assuntos
Algoritmos , Estudo de Associação Genômica Ampla , Estudo de Associação Genômica Ampla/métodos , Humanos , Modelos Logísticos , Estudos de Casos e Controles , Desequilíbrio de Ligação , Polimorfismo de Nucleotídeo Único , Genômica/métodos , Simulação por Computador , Haplótipos , Modelos Genéticos
2.
Nature ; 580(7803): E7, 2020 04.
Artigo em Inglês | MEDLINE | ID: mdl-32296181

RESUMO

An amendment to this paper has been published and can be accessed via a link at the top of the paper.

3.
Nature ; 579(7798): 265-269, 2020 03.
Artigo em Inglês | MEDLINE | ID: mdl-32015508

RESUMO

Emerging infectious diseases, such as severe acute respiratory syndrome (SARS) and Zika virus disease, present a major threat to public health1-3. Despite intense research efforts, how, when and where new diseases appear are still a source of considerable uncertainty. A severe respiratory disease was recently reported in Wuhan, Hubei province, China. As of 25 January 2020, at least 1,975 cases had been reported since the first patient was hospitalized on 12 December 2019. Epidemiological investigations have suggested that the outbreak was associated with a seafood market in Wuhan. Here we study a single patient who was a worker at the market and who was admitted to the Central Hospital of Wuhan on 26 December 2019 while experiencing a severe respiratory syndrome that included fever, dizziness and a cough. Metagenomic RNA sequencing4 of a sample of bronchoalveolar lavage fluid from the patient identified a new RNA virus strain from the family Coronaviridae, which is designated here 'WH-Human 1' coronavirus (and has also been referred to as '2019-nCoV'). Phylogenetic analysis of the complete viral genome (29,903 nucleotides) revealed that the virus was most closely related (89.1% nucleotide similarity) to a group of SARS-like coronaviruses (genus Betacoronavirus, subgenus Sarbecovirus) that had previously been found in bats in China5. This outbreak highlights the ongoing ability of viral spill-over from animals to cause severe disease in humans.


Assuntos
Betacoronavirus/classificação , Doenças Transmissíveis Emergentes/complicações , Doenças Transmissíveis Emergentes/virologia , Infecções por Coronavirus/complicações , Infecções por Coronavirus/virologia , Pneumonia Viral/complicações , Pneumonia Viral/virologia , Síndrome Respiratória Aguda Grave/etiologia , Síndrome Respiratória Aguda Grave/virologia , Adulto , Betacoronavirus/genética , COVID-19 , China , Doenças Transmissíveis Emergentes/diagnóstico por imagem , Doenças Transmissíveis Emergentes/patologia , Infecções por Coronavirus/diagnóstico por imagem , Infecções por Coronavirus/patologia , Genoma Viral/genética , Humanos , Pulmão/diagnóstico por imagem , Masculino , Filogenia , Pneumonia Viral/diagnóstico por imagem , Pneumonia Viral/patologia , RNA Viral/genética , Recombinação Genética/genética , SARS-CoV-2 , Síndrome Respiratória Aguda Grave/diagnóstico por imagem , Síndrome Respiratória Aguda Grave/patologia , Tomografia Computadorizada por Raios X , Sequenciamento Completo do Genoma
4.
Proc Natl Acad Sci U S A ; 120(21): e2220589120, 2023 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-37186856

RESUMO

The propagation of spin waves in magnetically ordered systems has emerged as a potential means to shuttle quantum information over large distances. Conventionally, the arrival time of a spin wavepacket at a distance, d, is assumed to be determined by its group velocity, vg. Here, we report time-resolved optical measurements of wavepacket propagation in the Kagome ferromagnet Fe3Sn2 that demonstrate the arrival of spin information at times significantly less than d/vg. We show that this spin wave "precursor" originates from the interaction of light with the unusual spectrum of magnetostatic modes in Fe3Sn2. Related effects may have far-reaching consequences toward realizing long-range, ultrafast spin wave transport in both ferromagnetic and antiferromagnetic systems.

5.
J Virol ; 98(8): e0003524, 2024 Aug 20.
Artigo em Inglês | MEDLINE | ID: mdl-39082875

RESUMO

The human immunodeficiency virus type 1 (HIV-1) reservoir consists of latently infected cells which present a major obstacle to achieving a functional cure for HIV-1. The formation and maintenance of HIV-1 latency have been extensively studied, and latency-reversing agents (LRAs) that can reactivate latent HIV-1 by targeting the involved host factors are developed; however, their clinical efficacies remain unsatisfactory. Therefore, it is imperative to identify novel targets for more potential candidates or better combinations for LRAs. In this study, we utilized CRISPR affinity purification in situ of regulatory elements system to screen for host factors associated with the HIV-1 long terminal repeat region that could potentially be involved in HIV-1 latency. We successfully identified that origin recognition complex 1 (ORC1), the largest subunit of the origin recognition complex, contributes to HIV-1 latency in addition to its function in DNA replication initiation. Notably, ORC1 is enriched on the HIV-1 promoter and recruits a series of repressive epigenetic elements, including DNMT1 and HDAC1/2, and histone modifiers, such as H3K9me3 and H3K27me3, thereby facilitating the establishment and maintenance of HIV-1 latency. Moreover, the reactivation of latent HIV-1 through ORC1 depletion has been confirmed across various latency cell models and primary CD4+ T cells from people living with HIV-1. Additionally, we comprehensively validated the properties of liquid-liquid phase separation (LLPS) of ORC1 from multiple perspectives and identified the key regions that promote the formation of LLPS. This property is important for the recruitment of ORC1 to the HIV-1 promoter. Collectively, these findings highlight ORC1 as a potential novel target implicated in HIV-1 latency and position it as a promising candidate for the development of novel LRAs. IMPORTANCE: Identifying host factors involved in maintaining human immunodeficiency virus type 1 (HIV-1) latency and understanding their mechanisms prepares the groundwork to discover novel targets for HIV-1 latent infection and provides further options for the selection of latency-reversing agents in the "shock" strategy. In this study, we identified a novel role of the DNA replication factor origin recognition complex 1 (ORC1) in maintaining repressive chromatin structures surrounding the HIV-1 promoter region, thereby contributing to HIV-1 latency. This discovery expands our understanding of the non-replicative functions of the ORC complex and provides a potential therapeutic strategy for HIV-1 cure.


Assuntos
Epigênese Genética , Infecções por HIV , Repetição Terminal Longa de HIV , HIV-1 , Complexo de Reconhecimento de Origem , Regiões Promotoras Genéticas , Latência Viral , Latência Viral/genética , Humanos , HIV-1/genética , HIV-1/fisiologia , Repetição Terminal Longa de HIV/genética , Infecções por HIV/virologia , Infecções por HIV/genética , Infecções por HIV/metabolismo , Complexo de Reconhecimento de Origem/metabolismo , Complexo de Reconhecimento de Origem/genética , Linfócitos T CD4-Positivos/virologia , Células HEK293 , DNA (Citosina-5-)-Metiltransferase 1/metabolismo , DNA (Citosina-5-)-Metiltransferase 1/genética , Histona Desacetilase 1/metabolismo , Histona Desacetilase 1/genética , Histona Desacetilase 2/metabolismo , Histona Desacetilase 2/genética , Regulação Viral da Expressão Gênica , Replicação Viral , Histonas/metabolismo , Histonas/genética
6.
Am J Pathol ; 2024 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-39069169

RESUMO

Wnt-5a is a protein that is encoded by the WNT5A gene and is a ligand for the receptor tyrosine kinase-like orphan receptor 2 (ROR2). However, its biological impact on clear cell renal cell carcinoma (ccRCC) remains unclear. In this study, the prognostic significance of concurrent WNT5A and ROR2 expression levels was observed to predict unfavorable overall survival and disease-specific survival. High Wnt-5a expression was detected in a ccRCC cell line panel but not in HK-2 cells, a normal proximal tubular cell line. Inhibition of DNA methyltransferase by 5-azacytidine in 786-O and Caki-2 cells resulted in Wnt-5a up-regulation, indicating potential epigenetic modification. Furthermore, the results revealed the repression of cell movement in vitro and metastatic colonization in vivo on WNT5A and ROR2 knockdown. The suppressions of angiogenesis in vivo and tubular-like structure formation in endothelial cells in vitro were also observed after silencing WNT5A and ROR2 expression. In addition, alteration in the downstream gene signature of the Wnt-5a-ROR2 signaling was discovered to be similar to that in metastasis-associated gene 1-ß-catenin axis. Moreover, prunetin treatment was found to reverse the gene signature derived from Wnt-5a-ROR2 signaling activation and to abolish ccRCC cell migration and proliferation. Overall, this study demonstrates the clinical and functional significance of the Wnt-5a-ROR2 axis and identifies prunetin as a potential precision medicine for patients with ccRCC harboring aberrant Wnt-5a-ROR2 signaling pathways.

7.
Plant Cell ; 34(1): 477-494, 2022 01 20.
Artigo em Inglês | MEDLINE | ID: mdl-34850207

RESUMO

Stomatal movement is critical for plant responses to environmental changes and is regulated by the important signaling molecule phosphatidylinositol 3-phosphate (PI3P). However, the molecular mechanism underlying this process is not well understood. In this study, we show that PI3P binds to stomatal closure-related actin-binding protein1 (SCAB1), a plant-specific F-actin-binding and -bundling protein, and inhibits the oligomerization of SCAB1 to regulate its activity on F-actin in guard cells during stomatal closure in Arabidopsis thaliana. SCAB1 binds specifically to PI3P, but not to other phosphoinositides. Treatment with wortmannin, an inhibitor of phosphoinositide kinase that generates PI3P, leads to an increase of the intermolecular interaction and oligomerization of SCAB1, stabilization of F-actin, and retardation of F-actin reorganization during abscisic acid (ABA)-induced stomatal closure. When the binding activity of SCAB1 to PI3P is abolished, the mutated proteins do not rescue the stability and realignment of F-actin regulated by SCAB1 and the stomatal closure in the scab1 mutant. The expression of PI3P biosynthesis genes is consistently induced when the plants are exposed to drought and ABA treatments. Furthermore, the binding of PI3P to SCAB1 is also required for vacuolar remodeling during stomatal closure. Our results illustrate a PI3P-regulated pathway during ABA-induced stomatal closure, which involves the mediation of SCAB1 activity in F-actin reorganization.


Assuntos
Actinas/química , Proteínas de Arabidopsis/genética , Arabidopsis/fisiologia , Regulação da Expressão Gênica de Plantas , Proteínas dos Microfilamentos/genética , Fosfatos de Fosfatidilinositol/metabolismo , Estômatos de Plantas/fisiologia , Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Proteínas dos Microfilamentos/metabolismo
8.
Nano Lett ; 24(22): 6617-6624, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38717095

RESUMO

The mapping of long-wavelength phonons is important to understand and manipulate the thermal transport in multilayered structures, but it remains a long-standing challenge due to the collective behaviors of phonons. In this study, an experimental demonstration of mapping the long-wavelength phonons in an alloyed Al0.1Ga0.9As/Al0.9Ga0.1As superlattice system is reported. Multiple strategies to filter out the short- to mid-wavelength phonons are used. The phonon mean-free-path-dependent thermal transport properties directly demonstrate both the suppression effect of the ErAs nanoislands and the contribution of long-wavelength phonons. The contribution from phonons with mean free path longer than 1 µm is clearly demonstrated. A model based on the Boltzmann transport equation is proposed to calculate and describe the thermal transport properties, which depicts a clear physical picture of the transport mechanisms. This method can be extended to map different wavelength phonons and become a universal strategy to explore their thermal transport in various application scenarios.

9.
J Biol Chem ; 299(12): 105481, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-38041932

RESUMO

Singlet oxygen (1O2) has a very short half-life of 10-5 s; however, it is a strong oxidant that causes growth arrest and necrotic lesions on plants. Its signaling pathway remains largely unknown. The Arabidopsis flu (fluorescent) mutant accumulates a high level of 1O2 and shows drastic changes in nuclear gene expression. Only two plastid proteins, EX1 (executer 1) and EX2 (executer 2), have been identified in the singlet oxygen signaling. Here, we found that the transcription factor abscisic acid insensitive 4 (ABI4) binds the promoters of genes responsive to 1O2-signals. Inactivation of the ABI4 protein in the flu/abi4 double mutant was sufficient to compromise the changes of almost all 1O2-responsive-genes and rescued the lethal phenotype of flu grown under light/dark cycles, similar to the flu/ex1/ex2 triple mutant. In addition to cell death, we reported for the first time that 1O2 also induces cell wall thickening and stomatal development defect. Contrastingly, no apparent growth arrest was observed for the flu mutant under normal light/dim light cycles, but the cell wall thickening (doubled) and stomatal density reduction (by two-thirds) still occurred. These results offer a new idea for breeding stress tolerant plants.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Ácido Abscísico/metabolismo , Arabidopsis/metabolismo , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Parede Celular/metabolismo , Regulação da Expressão Gênica de Plantas , Luz , Oxigênio Singlete/metabolismo , Transcriptoma , Estômatos de Plantas/metabolismo
10.
J Cell Physiol ; : e31367, 2024 Jul 10.
Artigo em Inglês | MEDLINE | ID: mdl-38988031

RESUMO

Oxidative phosphorylation is becoming increasingly important in the induction and development of endometriosis. Recently, it has been reported that ring finger protein 43 (RNF43) is involved in the process of oxidative phosphorylation, but the mechanism remains unclear. Our investigation is to delve into the roles of RNF43 in endometriosis and elucidate the related mechanisms. We found RNF43 was downregulated in ectopic endometrial tissue and primary ectopic endometrial stromal cells (ECESCs). Knockdown of RNF43 enhanced cell viability and migration by activating oxidative phosphorylation in eutopic endometrial stromal cells (EUESCs), while overexpression of RNF43 led to the opposite results. Moreover, RNF43 reinforced the ubiquitination and degradation of NADH dehydrogenase Fe-S protein 1 (NDUFS1) by interacting with it. Likewise to RNF43 overexpression, NDUFS1 silencing inhibited cell viability, migration, and oxidative phosphorylation in ECESCs. NDUFS1 was a downstream target of RNF43, mediating its biological role in endometriosis. Interestingly, the expression and stability of RNF43 mRNA were regulated by the Methyltransferase-like 3 (METTL3)/IGF2BP2 m6A modification axis. The results of rat experiments showed decreased RNF43 expression and increased NDUFS1 expression in endometriosis rats, which was enhanced by METTL3 inhibition. Those observations indicated that m6A methylation-mediated RNF43 negatively affects viability and migration of endometrial stromal cells through regulating oxidative phosphorylation via NDUFS1. The discovery of METTL3/RNF43/NDUFS1 axis suggested promising therapeutic targets for endometriosis.

11.
Cancer Sci ; 115(4): 1129-1140, 2024 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-38351514

RESUMO

Oncolytic viruses (OVs) possess the unique ability to selectively replicate within tumor cells, leading to their destruction, while also reversing the immunosuppression within the tumor microenvironment and triggering an antitumor immune response. As a result, OVs have emerged as one of the most promising approaches in cancer therapy. However, the effective delivery of intravenously administered OVs faces significant challenges imposed by various immune cells within the peripheral blood, hindering their access to tumor sites. Notably, neutrophils, the predominant white blood cell population comprising approximately 50%-70% of circulating white cells in humans, show phagocytic properties. Our investigation revealed that the majority of oncolytic vaccinia viruses (VV) are engulfed and degraded by neutrophils in the bloodstream. The depletion of neutrophils using the anti-LY6G Ab (1-A8) resulted in an increased accumulation of circulating oncolytic VV in the peripheral blood and enhanced deposition at the tumor site, consequently amplifying the antitumor effect. Neutrophils heavily rely on PI3K signaling to sustain their phagocytic process. Additionally, our study determined that the inhibition of the PI3Kinase delta isoform by idelalisib (CAL-101) suppressed the uptake of oncolytic VV by neutrophils. This inhibition led to a greater presence of oncolytic VV in both the peripheral blood and at the tumor site, resulting in improved efficacy against the tumor. In conclusion, our study showed that inhibiting neutrophil functions can significantly enhance the antitumor efficacy of intravenous oncolytic VV.


Assuntos
Neoplasias , Terapia Viral Oncolítica , Vírus Oncolíticos , Humanos , Vírus Oncolíticos/fisiologia , Vaccinia virus/fisiologia , Neutrófilos/patologia , Terapia Viral Oncolítica/métodos , Fosfatidilinositol 3-Quinases , Neoplasias/patologia , Microambiente Tumoral
12.
BMC Plant Biol ; 24(1): 684, 2024 Jul 18.
Artigo em Inglês | MEDLINE | ID: mdl-39020284

RESUMO

Malus sieversii, commonly known as wild apples, represents a Tertiary relict plant species and serves as the progenitor of globally cultivated apple varieties. Unfortunately, wild apple populations are facing significant degradation in localized areas due to a myriad of factors. To gain a comprehensive understanding of the nutrient status and spatiotemporal variations of M. sieversii, green leaves were collected in May and July, and the fallen leaves were collected in October. The concentrations of leaf nitrogen (N), phosphorus (P), and potassium (K) were measured, and the stoichiometric ratios as well as nutrient resorption efficiencies were calculated. The study also explored the relative contributions of soil, topographic, and biotic factors to the variation in nutrient traits. The results indicate that as the growing period progressed, the concentrations of N and P in the leaves significantly decreased (P < 0.05), and the concentration of K in October was significantly lower than in May and July. Throughout plant growth, leaf N-P and N-K exhibited hyperallometric relationships, while P-K showed an isometric relationship. Resorption efficiency followed the order of N < P < K (P < 0.05), with all three ratios being less than 1; this indicates that the order of nutrient limitation is K > P > N. The resorption efficiencies were mainly regulated by nutrient concentrations in fallen leaves. A robust spatial dependence was observed in leaf nutrient concentrations during all periods (70.1-97.9% for structural variation), highlighting that structural variation, rather than random factors, dominated the spatial variation. Nutrient resorption efficiencies (NRE, PRE, and KRE) displayed moderate structural variation (30.2-66.8%). The spatial patterns of nutrient traits varied across growth periods, indicating they are influenced by multifactorial elements (in which, soil property showed the highest influence). In conclusion, wild apples manifested differentiated spatiotemporal variability and influencing factors across various leaf nutrient traits. These results provide crucial insights into the spatiotemporal patterns and influencing factors of leaf nutrient traits of M. sieversii at the permanent plot scale for the first time. This work is of great significance for the ecosystem restoration and sustainable management of degrading wild fruit forests.


Assuntos
Malus , Nitrogênio , Fósforo , Folhas de Planta , Potássio , Folhas de Planta/metabolismo , Malus/metabolismo , Malus/crescimento & desenvolvimento , Malus/fisiologia , China , Fósforo/metabolismo , Fósforo/análise , Nitrogênio/metabolismo , Potássio/metabolismo , Potássio/análise , Florestas , Nutrientes/metabolismo , Nutrientes/análise , Solo/química , Frutas/crescimento & desenvolvimento , Frutas/metabolismo , Análise Espaço-Temporal
13.
BMC Plant Biol ; 24(1): 316, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38654195

RESUMO

BACKGROUND: Salt stress significantly reduces soybean yield. To improve salt tolerance in soybean, it is important to mine the genes associated with salt tolerance traits. RESULTS: Salt tolerance traits of 286 soybean accessions were measured four times between 2009 and 2015. The results were associated with 740,754 single nucleotide polymorphisms (SNPs) to identify quantitative trait nucleotides (QTNs) and QTN-by-environment interactions (QEIs) using three-variance-component multi-locus random-SNP-effect mixed linear model (3VmrMLM). As a result, eight salt tolerance genes (GmCHX1, GsPRX9, Gm5PTase8, GmWRKY, GmCHX20a, GmNHX1, GmSK1, and GmLEA2-1) near 179 significant and 79 suggested QTNs and two salt tolerance genes (GmWRKY49 and GmSK1) near 45 significant and 14 suggested QEIs were associated with salt tolerance index traits in previous studies. Six candidate genes and three gene-by-environment interactions (GEIs) were predicted to be associated with these index traits. Analysis of four salt tolerance related traits under control and salt treatments revealed six genes associated with salt tolerance (GmHDA13, GmPHO1, GmERF5, GmNAC06, GmbZIP132, and GmHsp90s) around 166 QEIs were verified in previous studies. Five candidate GEIs were confirmed to be associated with salt stress by at least one haplotype analysis. The elite molecular modules of seven candidate genes with selection signs were extracted from wild soybean, and these genes could be applied to soybean molecular breeding. Two of these genes, Glyma06g04840 and Glyma07g18150, were confirmed by qRT-PCR and are expected to be key players in responding to salt stress. CONCLUSIONS: Around the QTNs and QEIs identified in this study, 16 known genes, 6 candidate genes, and 8 candidate GEIs were found to be associated with soybean salt tolerance, of which Glyma07g18150 was further confirmed by qRT-PCR.


Assuntos
Interação Gene-Ambiente , Genes de Plantas , Glycine max , Polimorfismo de Nucleotídeo Único , Locos de Características Quantitativas , Tolerância ao Sal , Glycine max/genética , Glycine max/fisiologia , Tolerância ao Sal/genética , Locos de Características Quantitativas/genética , Fenótipo
14.
Small ; 20(26): e2308527, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38221686

RESUMO

Flexible hydroelectric generators (HEGs) are promising self-powered devices that spontaneously derive electrical power from moisture. However, achieving the desired compatibility between a continuous operating voltage and superior current density remains a significant challenge. Herein, a textile-based van der Waals heterostructure is rationally designed between conductive 1T phase tungsten disulfide@carbonized silk (1T-WS2@CSilk) and carbon black@cotton (CB@Cotton) fabrics with an asymmetric distribution of oxygen-containing functional groups, which enhances the proton concentration gradients toward high-performance wearable HEGs. The vertically staggered 1T-WS2 nanosheet arrays on the CSilk fabric provide abundant hydrophilic nanochannels for rapid carrier transport. Furthermore, the moisture-induced primary battery formed between the active aluminum (Al) electrode and the conductive textiles introduces the desired electric field to facilitate charge separation and compensate for the decreased streaming potential. These devices exhibit a power density of 21.6 µW cm-2, an open-circuit voltage (Voc) of 0.65 V sustained for over 10 000 s, and a current density of 0.17 mA cm-2. This performance makes them capable of supplying power to commercial electronics and human respiratory monitoring. This study presents a promising strategy for the refined design of wearable electronics.

15.
Mol Hum Reprod ; 30(4)2024 Mar 28.
Artigo em Inglês | MEDLINE | ID: mdl-38407339

RESUMO

The pathogenesis of adenomyosis is closely related to the epithelial-mesenchymal transition and macrophages. MicroRNAs have been extensively investigated in relation to the epithelial-mesenchymal transition in a range of malignancies. However, there is a paucity of research on extracellular vesicles derived from the eutopic endometrium of adenomyosis and their encapsulated microRNAs. In this study, we investigated the role of microRNA-25-3p derived from extracellular vesicles in inducing macrophage polarization and promoting the epithelial-mesenchymal transition in endometrial epithelial cells of patients with adenomyosis and controls. We obtained eutopic endometrial samples and isolated extracellular vesicles from the culture supernatant of primary endometrial cells. Real-time quantitative PCR analysis demonstrated that microRNA-25-3p was highly expressed in extracellular vesicles, as well as in macrophages stimulated by extracellular vesicles from eutopic endometrium of adenomyosis; and macrophages transfected with microRNA-25-3p exhibited elevated levels of M2 markers, while displaying reduced levels of M1 markers. After co-culture with the above polarized macrophages, endometrial epithelial cells expressed higher levels of N-cadherin and Vimentin, and lower protein levels of E-cadherin and Cytokeratin 7. It was revealed that microRNA-25-3p encapsulated in extracellular vesicles from eutopic endometrial cells could induce macrophage polarization toward M2, and the polarized macrophages promote epithelial-mesenchymal transition in epithelial cells. However, in vitro experiments revealed no significant disparity in the migratory capacity of endometrial epithelial cells between the adenomyosis group and the control group. Furthermore, it was observed that microRNA-25-3p-stimulated polarized macrophages also facilitated the epithelial-mesenchymal transition and migration of endometrial epithelial cells within the control group. Thus, the significance of microRNA-25-3p-induced polarized macrophages in promoting the development of adenomyosis is unclear, and macrophage infiltration alone may be adequate for this process. We emphasize the specificity of the local eutopic endometrial microenvironment and postulate its potential significance in the pathogenesis of adenomyosis.


Assuntos
Adenomiose , Vesículas Extracelulares , MicroRNAs , Feminino , Humanos , Adenomiose/genética , Adenomiose/metabolismo , Endométrio/metabolismo , Transição Epitelial-Mesenquimal/genética , MicroRNAs/genética , MicroRNAs/metabolismo , Células Epiteliais/metabolismo , Vesículas Extracelulares/genética , Vesículas Extracelulares/metabolismo , Macrófagos/metabolismo
16.
Brief Bioinform ; 23(2)2022 03 10.
Artigo em Inglês | MEDLINE | ID: mdl-35152287

RESUMO

Detecting small and linked quantitative trait loci (QTLs) and QTL-by-environment interactions (QEIs) for complex traits is a difficult issue in immortalized F2 and F2:3 design, especially in the era of global climate change and environmental plasticity research. Here we proposed a compressed variance component mixed model. In this model, a parametric vector of QTL genotype and environment combination effects replaced QTL effects, environmental effects and their interaction effects, whereas the combination effect polygenic background replaced the QTL and QEI polygenic backgrounds. Thus, the number of variance components in the mixed model was greatly reduced. The model was incorporated into our genome-wide composite interval mapping (GCIM) to propose GCIM-QEI-random and GCIM-QEI-fixed, respectively, under random and fixed models of genetic effects. First, potentially associated QTLs and QEIs were selected from genome-wide scanning. Then, significant QTLs and QEIs were identified using empirical Bayes and likelihood ratio test. Finally, known and candidate genes around these significant loci were mined. The new methods were validated by a series of simulation studies and real data analyses. Compared with ICIM, GCIM-QEI-random had 29.77 ± 18.20% and 24.33 ± 10.15% higher average power, respectively, in 0.5-3.0% QTL and QEI detection, 43.44 ± 9.53% and 51.47 ± 15.70% higher average power, respectively, in linked QTL and QEI detection, and identified 30 more known genes for four rice yield traits, because GCIM-QEI-random identified more small genes/loci, being 2.69 ± 2.37% for additional genes. GCIM-QEI-random was slightly better than GCIM-QEI-fixed. In addition, the new methods may be extended into backcross and genome-wide association studies. This study provides effective methods for detecting small-effect and linked QTLs and QEIs.


Assuntos
Estudo de Associação Genômica Ampla , Locos de Características Quantitativas , Teorema de Bayes , Mapeamento Cromossômico , Interação Gene-Ambiente , Fenótipo
17.
J Transl Med ; 22(1): 297, 2024 03 22.
Artigo em Inglês | MEDLINE | ID: mdl-38515161

RESUMO

BACKGROUND: The aberrant secretion and excessive deposition of type I collagen (Col1) are important factors in the pathogenesis of myocardial fibrosis in dilated cardiomyopathy (DCM). However, the precise molecular mechanisms underlying the synthesis and secretion of Col1 remain unclear. METHODS AND RESULTS: RNA-sequencing analysis revealed an increased HtrA serine peptidase 1 (HTRA1) expression in patients with DCM, which is strongly correlated with myocardial fibrosis. Consistent findings were observed in both human and mouse tissues by immunoblotting, quantitative reverse transcription polymerase chain reaction (qRT-PCR), immunohistochemistry, and immunofluorescence analyses. Pearson's analysis showed a markedly positive correlation between HTRA1 level and myocardial fibrosis indicators, including extracellular volume fraction (ECV), native T1, and late gadolinium enhancement (LGE), in patients with DCM. In vitro experiments showed that the suppression of HTRA1 inhibited the conversion of cardiac fibroblasts into myofibroblasts and decreased Col1 secretion. Further investigations identified the role of HTRA1 in promoting the formation of endoplasmic reticulum (ER) exit sites, which facilitated the transportation of Col1 from the ER to the Golgi apparatus, thereby increasing its secretion. Conversely, HTRA1 knockdown impeded the retention of Col1 in the ER, triggering ER stress and subsequent induction of ER autophagy to degrade misfolded Col1 and maintain ER homeostasis. In vivo experiments using adeno-associated virus-serotype 9-shHTRA1-green fluorescent protein (AAV9-shHTRA1-GFP) showed that HTRA1 knockdown effectively suppressed myocardial fibrosis and improved left ventricular function in mice with DCM. CONCLUSIONS: The findings of this study provide valuable insights regarding the treatment of DCM-associated myocardial fibrosis and highlight the therapeutic potential of targeting HTRA1-mediated collagen secretion.


Assuntos
Cardiomiopatias , Cardiomiopatia Dilatada , Animais , Humanos , Camundongos , Colágeno Tipo I , Meios de Contraste , Fibrose , Gadolínio , Miocárdio/patologia
18.
BMC Microbiol ; 24(1): 281, 2024 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-39068412

RESUMO

BACKGROUND: Adenomyosis is a commonly observed benign gynecological disease that affects the quality of life and social psychology of women of childbearing age. However, because of the unknown etiology and incidence of adenomyosis, its pathophysiological mechanism remains unclear; further, because no noninvasive, accurate, and individualized diagnostic methods are available, treatment and efficacy evaluations are limited. Notably, the interaction between the changes in the microecological environment of the female reproductive tract and human immunity, endocrine, and other links leads to the occurrence and development of diseases. In addition, the vaginal microbiome differs in different menstrual cycles; therefore, assessing the differences between the microbiomes of patients with adenomyosis and healthy individuals in different menstrual cycles will improve the understanding of the disease and provide references for the search for noninvasive diagnosis and individualized precision treatment of adenomyosis. This study aimed to explored the data of individuals in different menstrual cycles. RESULTS: Differences in the vaginal microbiome between patients with adenomyosis and healthy individuals were observed. At phylum level, the relative abundance of Firmicutes in the adenomyosis group was higher than that in the control group, which contributed the most to the species difference between the two groups. At the genus level, Lactobacillus was the most dominant in both groups, Alpha-diversity analysis showed significant differences in the adenomyosis and control group during luteal phase (Shannon index, p = 0.0087; Simpson index, p = 0.0056). Beta-diversity index was significantly different between the two groups (p = 0.018). However, based on Weighted Unifrac analysis, significant differences were only observed throughout the luteal phase (p = 0.0146). Within the adenomyosis group, differences between women with different menstrual cycles were also observed. Finally, 50 possible biomarkers including were screened and predicted based on the random forest analyse. CONCLUSIONS: The vaginal microbiome of patients with adenomyosis and healthy individuals differed during menstrual periods, especially during the luteal phase. These findings facilitate the search for specific biological markers within a limited range and provide a more accurate, objective, and individualized diagnostic and therapeutic evaluation method for patients with adenomyosis, compared to what is currently available.


Assuntos
Adenomiose , Ciclo Menstrual , Microbiota , Vagina , Humanos , Feminino , Vagina/microbiologia , Ciclo Menstrual/fisiologia , Adulto , Adenomiose/microbiologia , Adenomiose/fisiopatologia , Adenomiose/complicações , Bactérias/classificação , Bactérias/isolamento & purificação , Bactérias/genética , Estudos de Casos e Controles , RNA Ribossômico 16S/genética , Lactobacillus/isolamento & purificação
19.
Langmuir ; 40(10): 5326-5337, 2024 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-38408337

RESUMO

Capacitors with zinc ions, with excellent stabilities, low cost, and high energy density, are expected to be promising energy storage devices. However, the development of zinc-ion capacitors is quietly restricted by low specific capacity and cycling stability. Herein, to overcome these limitations, honeycomb-structured S, N-codoped carbon (SNPC) is constructed by one-pot calcination of waste corn bracts and thiourea. The honeycomb structure of SNPC is demonstrated to provide abundant active sites that can enhance the extron/ion transport, conductivity for high power export, and ion adsorption capacity in energy storage applications, leading to a higher electrochemical performance achieved. The electrolytes of zinc salt have also been studied. It reveals that the SNPC electrode presents the best electrochemical performance in a 2 M ZnSO4 and 0.5 M ZnCl2 electrolyte mixture because in the electrolyte mixture, Cl- can replace the existing bound water in the solvation structure to form an anion-type water-free solvation structure ZnCl42-. The SNPC-800 electrode with a highly improved surface area (∼909.0 m2 g-1) is proved to be more suitable as the electrode than other materials. Aqueous zinc-ion capacitors (ZICs) have been assembled by the honeycomb-structured SNPC-800 as the cathode, which can achieve a relatively wide working voltage range of 0.1-1.8 V. The SNPC-800 ZICs exhibit a superior specific capacity of 179.1 mA h g-1 at 0.1 A g-1. The energy density of SNPC-800 ZICs reaches an impressive value of 89.6 Wh kg-1 at 53.8 W kg-1, and it sustains 28.3 Wh kg-1 at 1997.6 W kg-1. In addition, there is 99.8% capacity retention in the SNPC-800 ZICs over 5000 cycles. The absorption energy in SPNC is much higher than that in undoped CPC, as confirmed by density functional theory, which reveals that introducing of heteroatoms (S, N) has a comparatively active advantage at increasing the Zn-ion storage capacity. This work proposes a practical strategy for the effective recycling of waste biomass materials into honeycomb carbon electrode materials. Moreover, the honeycomb carbon-based ZICs with excellent electrochemical performance and long-term cycling stability possess great potential to be a superior cathode in practical applications.

20.
Pediatr Res ; 95(1): 241-250, 2024 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-37648747

RESUMO

BACKGROUND: We hypothesized that specific food hypersensitivity (FH) in children is linked to specific gut microbiota. The aim of our study was to quantify and evaluate differences in gut microbial composition among children with different IgE-mediated FH. METHODS: Children (n = 81) aged 18 to 36 months were enrolled, fecal samples of 57 children with FH and 24 healthy children were evaluated using next-generation sequencing. Individual microbial diversity and composition were analyzed via targeting the 16 S rRNA gene hypervariable V3-V5 regions. RESULTS: Children with IgE-mediated FH (in milk, egg white, soy) had significantly lower gut microbiota diversity and richness than healthy children. Children with IgE-mediated FH exhibited relatively high abundances of Firmicutes and relative underrepresentation of the phylum Bacteroidetes. We observed significant increases in relative abundances of Ruminococcaceae, Clostridiaceae, and Erysipelotrichaceae (p < 0.01, compared to control) in children with milk hypersensitivity and of Clostridiaceae and Erysipelotrichaceae (p < 0.01) in children with peanut hypersensitivity. We also found significant increases in the numbers of Clostridiaceae, Lachnospiraceae and Pasteurellaceae (p < 0.01) in children with egg white hypersensitivity. CONCLUSIONS: These findings identify early evidence of different gut microbiota development/ differentiation in children with food hypersensitivity. Specific food hypersensitivities may be associated with compositional changes in intestinal microbiota. IMPACT: These findings identify early evidence of different gut microbiota development/differentiation in children with food hypersensitivity. We built a gut microbial profile that could identify toddlers at risk for food hypersensitivity. Children with enriched Firmicutes (phylum) with partial different families may be associated with food hypersensitivity. Enriched family Clostridiaceae, Ruminococcaceae, Lachnospiraceae, or Erysipelotrichaceae in gut microbiota may be associated with specific food hypersensitivities (such as milk, egg white, peanut) in children.


Assuntos
Hipersensibilidade Alimentar , Microbioma Gastrointestinal , Humanos , RNA Ribossômico 16S/genética , Genes de RNAr , Firmicutes/genética , Microbioma Gastrointestinal/genética , Alérgenos , Imunoglobulina E , Fezes
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA