Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 8 de 8
Filtrar
1.
Thorax ; 77(4): 391-397, 2022 04.
Artigo em Inglês | MEDLINE | ID: mdl-34301742

RESUMO

BACKGROUND: Ambient fine particulate matter with aerodynamic diameter less than 2.5 µm (PM2.5) has been associated with deteriorated respiratory health, but evidence on particles in smaller sizes and childhood respiratory health has been limited. METHODS: We collected time-series data on daily respiratory emergency room visits (ERVs) among children under 14 years old in Beijing, China, during 2015-2017. Concurrently, size-fractioned number concentrations of particles in size ranges of 5-560 nm (PNC5-560) and mass concentrations of PM2.5, black carbon (BC) and nitrogen dioxide (NO2) were measured from a fixed-location monitoring station in the urban area of Beijing. Confounder-adjusted Poisson regression models were used to estimate excessive risks (ERs) of particle size fractions on childhood respiratory ERVs, and positive matrix factorisation models were applied to apportion the sources of PNC5-560. RESULTS: Among the 136 925 cases of all-respiratory ERVs, increased risks were associated with IQR increases in PNC25-100 (ER=5.4%, 95% CI 2.4% to 8.6%), PNC100-560 (4.9%, 95% CI 2.5% to 7.3%) and PM2.5 (1.3%, 95% CI 0.1% to 2.5%) at current and 1 prior days (lag0-1). Major sources of PNC5-560 were identified, including nucleation (36.5%), gasoline vehicle emissions (27.9%), diesel vehicle emissions (18.9%) and secondary aerosols (10.6%). Emissions from gasoline and diesel vehicles were found of significant associations with all-respiratory ERVs, with increased ERs of 6.0% (95% CI 2.5% to 9.7%) and 4.4% (95% CI 1.7% to 7.1%) at lag0-1 days, respectively. Exposures to other traffic-related pollutants (BC and NO2) were also associated with increased respiratory ERVs. CONCLUSION: Our findings suggest that exposures to higher levels of PNC5-560 from traffic emissions could be attributed to increased childhood respiratory morbidity, which supports traffic emission control priority in urban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Adolescente , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Criança , Serviço Hospitalar de Emergência , Monitoramento Ambiental , Humanos , Material Particulado/efeitos adversos , Material Particulado/análise , Emissões de Veículos/análise , Emissões de Veículos/toxicidade
2.
Environ Sci Technol ; 56(15): 10868-10878, 2022 08 02.
Artigo em Inglês | MEDLINE | ID: mdl-35834827

RESUMO

Evidence of the respiratory effects of ambient organic aerosols (e.g., polycyclic aromatic hydrocarbons, PAHs) among patients with chronic diseases is limited. We aimed to assess whether exposure to ambient particle-bound PAHs could worsen small airway functions in patients with chronic obstructive pulmonary disease (COPD) and elucidate the underlying mechanisms involved. Forty-five COPD patients were recruited with four repeated visits in 2014-2015 in Beijing, China. Parameters of pulmonary function and pulmonary/systemic inflammation and oxidative stress were measured at each visit. Linear mixed-effect models were performed to evaluate the associations between PAHs and measurements. In this study, participants experienced an average PAH level of 61.7 ng/m3. Interquartile range increases in exposure to particulate PAHs at prior up to 7 days were associated with reduced small airway functions, namely, decreases of 17.7-35.5% in forced maximal mid-expiratory flow. Higher levels of particulate PAHs were also associated with heightened lung injury and inflammation and oxidative stress. Stronger overall effects were found for PAHs from traffic emissions and coal burning. Exposure to ambient particulate PAHs was capable of impairing small airway functions in elderly patients with COPD, potentially via inflammation and oxidative stress. These findings highlight the importance of control efforts on organic particulate matter from fossil fuel combustion emissions.


Assuntos
Poluentes Atmosféricos , Hidrocarbonetos Policíclicos Aromáticos , Doença Pulmonar Obstrutiva Crônica , Idoso , Poluentes Atmosféricos/análise , China , Carvão Mineral , Poeira , Monitoramento Ambiental , Humanos , Inflamação , Material Particulado/análise , Hidrocarbonetos Policíclicos Aromáticos/análise , Aerossóis e Gotículas Respiratórios
3.
J Hazard Mater ; 465: 133094, 2024 Mar 05.
Artigo em Inglês | MEDLINE | ID: mdl-38029589

RESUMO

Prevalence of subclinical hypothyroidism substantially increased during the last decade in China, which has been commonly/clinically diagnosed as elevation in thyrotropin (thyroid-stimulating hormone [TSH]). Tobacco smoke containing toxic substances has been linked to thyroid dysfunction; however, data on perturbation of TSH following air pollution exposure in human has not been assessed at nationwide population level. We investigated the longitudinal impact of daily ambient air pollution estimated at residential level on serum TSH in 1.38 million women from China's 29 mainland provinces between 2014 and 2019. We observed that particulate matter with aerodynamic diameter ≤ 10 and ≤ 2.5 µm (PM10, PM2.5) and nitrogen dioxide (NO2) at cumulative lag 0-7 days of exposure were associated with percent elevations in TSH (0.88% [95% CI: 0.71, 1.05] per [interquartile range, IQR: 54.8 µg/m3] of PM10; 0.89% [95% CI, 0.71, 1.07] per IQR [40.3 µg/m3] of PM2.5; 2.01% [95% CI: 1.81, 2.22] per IQR [27.4 µg/m3] of NO2). Greater associations were observed in participants living in areas with ≥adequate iodine intake and those with low BMI levels and high inflammation status. Our results suggest that increased concentrations of recent ambient air pollutants at exposure ranges commonly encountered in Asia were associated with increases in TSH, supporting disturbing role of short-term air pollution exposure on the regulation of thyroid hormone homeostasis.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Humanos , Feminino , Dióxido de Nitrogênio/toxicidade , Exposição Ambiental/análise , Poluição do Ar/análise , Poluentes Atmosféricos/análise , Material Particulado/toxicidade , China/epidemiologia , Tireotropina
4.
Environ Int ; 158: 106981, 2022 01.
Artigo em Inglês | MEDLINE | ID: mdl-34991245

RESUMO

BACKGROUND: Emerging studies have investigated potential cardiovascular and respiratory health impacts from the use of personal-level intervention equipment against air pollution exposure. The objective of this systematic review is to assess the efficacy of personal-level air pollution intervention on mitigating adverse health effects from air pollution exposure by using portable air cleaner or wearing respirator. METHODS: In this systematic review, we searched PubMed and Web of Science for published literatures up to May 31, 2020, focusing on personal-level air pollution intervention studies. Among these studies, we investigated the impacts on cardio-respiratory responses to the use of these interventions. The intervention of review interest was the use of personal-level equipment against air pollution, including using portable air cleaner indoors or wearing respirator outdoors. The outcome of review interest was impacts on cardio-respiratory health endpoints following interventions, including level changes in blood pressure, heart rate variability (HRV), lung function, and biomarkers of inflammation and oxidative stress. Weighted mean differences or percent changes were pooled in meta-analyses for these health endpoints. The heterogeneity across studies was assessed using the Cochran's Q-statistic test, and the individual study quality was assessed using the Cochrane risk of bias tool version 2 (RoB 2). We further applied the Grading of Recommendations Assessment, Development, and Evaluation (GRADE) method to evaluate the certainty of evidence. RESULTS: From systematic literature search and screening, we identified 29 related eligible intervention studies, including 21 studies on indoor portable air cleaner use and 8 studies on respirator use. For portable air cleaner intervention, we observed suggestive evidence of beneficial changes on cardio-respiratory health endpoints. Collectively in these studies, we found significantly beneficial changes of 2.01% decreases (95% CI: 0.50%, 3.52%) in systolic blood pressure, as well as non-significantly beneficial changes of 3.04% increases (95% CI: -2.65%, 8.74%) in reactive hyperemia index and 0.24% increases (95% CI: -0.82%, 1.31%) in forced expiratory volume in 1 s. We also observed non-significant reductions in levels of inflammation and oxidative stress biomarkers, including C-reactive protein, interleukin-6, fibrinogen, fractional exhaled nitric oxide and malondialdehyde. For respirator intervention, we observed some beneficial changes on cardiovascular health endpoints, such as significant increases in HRV parameters [SDNN (2.20%, 95% CI: 0.54%, 3.86%)], as well as non-significant decreases in blood pressure [SBP (0.63 mmHg, 95% CI: -0.39, 1.66)]; however, no sufficient data were available for meta-analyses on lung function and biomarkers. RoB 2 assessments suggested that most intervention studies were with a moderate to high overall risk of bias. The certainty of evidence for intervention outcome pairs was graded very low for either portable air cleaner or respirator intervention. The common reasons to downgrade study evidence included loss to follow-up, lack of blinding, lack of washout period, small sample size, and high heterogeneity across studies. CONCLUSIONS: The uses of indoor portable air cleaner and respirator could contribute to some beneficial changes on cardiovascular health, but with much limited evidence on respiratory health. Low certainty of the overall study evidence shed light on future research for larger sample size trials with more rigorous study design.


Assuntos
Poluição do Ar em Ambientes Fechados , Poluição do Ar , Biomarcadores , Teste da Fração de Óxido Nítrico Exalado , Ventiladores Mecânicos
5.
Int J Hyg Environ Health ; 242: 113973, 2022 05.
Artigo em Inglês | MEDLINE | ID: mdl-35447399

RESUMO

BACKGROUND: Ambient particles have been associated with gestational diabetes mellitus (GDM), however, no study has evaluated the effects of traffic-related ambient particles on the risks of GDM subgroups classified by oral glucose tolerance test (OGTT) values. METHODS: A retrospective analysis was conducted among 24,001 pregnant women who underwent regular prenatal care and received OGTT at Haidian Maternal and Child Health Hospital in Beijing, China, 2014-2017. A total of 3,168 (13.2%) pregnant women were diagnosed with GDM, including 1,206 with isolated fasting hyperglycaemia (GDM-IFH). At a fixed-location monitoring station, routinely monitored ambient particles included fine particulate matter (PM2.5), black carbon (BC) and particles in size ranges of 5-560 nm (PNC5-560). Contributions of PNC5-560 sources were apportioned by positive matrix factorization model. Logistic regression model was applied to estimate odds ratio (OR) of ambient particles on GDM risk. RESULTS: Among the 24,001 pregnancy women recruited in this study, 3,168 (13.2%) were diagnosed with GDM, including 1,206 with isolated fasting hyperglycaemia (GDM-IFH) and 1,295 with isolated post-load hyperglycaemia (GDM-IPH). We observed increased GDM-IFH risk with per interquartile range increase in first-trimester exposures to PM2.5 (OR = 1.94; 95% Confidence Intervals: 1.23-3.07), BC (OR = 2.14; 1.73-2.66) and PNC5-560 (OR = 2.46; 1.90-3.19). PNC5-560 originated from diesel and gasoline vehicle emissions were found in associations with increases in GDM-IFH risk, but not in GDM-IPH risk. CONCLUSION: Our findings suggest that exposure to traffic-related ambient particles may increase GDM risk by exerting adverse effects on fasting glucose levels during pregnancy, and support continuing efforts to reduce traffic emissions for protecting vulnerable population who are at greater risk of glucose metabolism disorder.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Diabetes Gestacional , Hiperglicemia , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Pequim/epidemiologia , Glicemia/análise , Criança , Diabetes Gestacional/induzido quimicamente , Diabetes Gestacional/epidemiologia , Jejum , Feminino , Humanos , Hiperglicemia/epidemiologia , Exposição Materna/efeitos adversos , Material Particulado/análise , Gravidez , Estudos Retrospectivos
6.
Sci Total Environ ; 827: 154210, 2022 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-35240186

RESUMO

AIMS: Evidence on the impacts of traffic-related air pollution (TRAP) on ST-segment elevation myocardial infarction (STEMI) events is limited. We aimed to assess the acute effects of TRAP exposure on the clinical onset of STEMI and related cardiac impairments. METHODS AND RESULTS: We recruited patients who were admitted for STEMI and underwent primary percutaneous coronary intervention at Peking University Third Hospital between 2014 and 2020. Indicators relevant to cardiac impairments were measured. Concomitantly, hourly concentrations of traffic pollutants were monitored throughout the study period, including fine particulate matter, black carbon (BC), particles in size ranges of 5-560 nm, oxides of nitrogen (NOX), nitrogen dioxide, and carbon monoxide. The mean (SD) age of participants was 62.4 (12.5) years. Daily average (range) concentrations of ambient BC and NOX were 3.9 (0.1-25.0) µg/m3 and 90.8 (16.6-371.7) µg/m3. Significant increases in STEMI risks of 5.9% (95% CI: 0.1, 12.0) to 21.9% (95% CI: 6.0, 40.2) were associated with interquartile range increases in exposure to TRAP within a few hours. These changes were accompanied by significant elevations in cardiac troponin T levels of 6.9% (95% CI: 0.2, 14.1) to 41.7% (95% CI: 21.2, 65.6), as well as reductions in left ventricular ejection fraction of 1.5% (95% CI: 0.1, 2.9) to 3.7% (95% CI: 0.8, 6.4). Furthermore, the associations were attenuated in participants living in areas with higher residential greenness levels. CONCLUSIONS: Our findings extend current understanding that short-term exposure to higher levels of traffic pollution was associated with increased STEMI risks and exacerbated cardiac impairments, and provide evidence on traffic pollution control priority for protecting vulnerable populations who are at greater risks of cardiovascular events.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Infarto do Miocárdio com Supradesnível do Segmento ST , Poluição Relacionada com o Tráfego , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/análise , Exposição Ambiental/análise , Humanos , Pessoa de Meia-Idade , Material Particulado/análise , Infarto do Miocárdio com Supradesnível do Segmento ST/epidemiologia , Volume Sistólico , Poluição Relacionada com o Tráfego/efeitos adversos , Função Ventricular Esquerda
7.
Sci Total Environ ; 812: 151488, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34742962

RESUMO

Maternal exposure to fine particulate matter (PM2.5) has been associated with increased risk of preterm birth (PTB), but evidence on particles in smaller sizes and PTB risk remains limited. In this retrospective analysis, we included birth records of 24,001 singleton live births from Haidian Maternal and Child Health Hospital in Beijing, China, 2014-2017. Concurrently, number concentrations of size-fractioned particles in size ranges of 5-560 nm (PNC5-560) and mass concentrations of PM2.5, black carbon (BC) and gaseous pollutants were measured from a fixed-location monitoring station in central Haidian District. Logistic regression models were used to estimate the odds ratio (OR) of air pollutants on PTB risk after controlling for temperature, relative humidity, and individual covariates (e.g., maternal age, ethnicity, gravidity, parity, gestational weight gain, fetal gender, the year and season of conception). Positive matrix factorization models were then used to apportion the sources of PNC5-560. Among the 1062 (4.4%) PTBs, increased PTB risk was observed during the third trimester of pregnancy per 10 µg/m3 increase in PM2.5 [OR = 1.92; 95% Confidence Interval (95% CI): 1.76, 2.09], per 1000 particles/cm3 increase in PNC25-100 (OR = 1.09; 95% CI: 1.03, 1.15) and PNC100-560 (OR = 1.22; 95% CI: 1.05, 1.42). Among the identified sources of PNC5-560, emissions from gasoline and diesel vehicles were significantly associated with increased PTB risk, with ORs of 1.14 (95% CI: 1.01, 1.29) and 1.11 (95% CI: 1.04, 1.18), respectively. Exposures to other traffic-related air pollutants, such as BC and nitrogen dioxide (NO2) were also significantly associated with increased PTB risk. Our findings highlight the importance of traffic emission reduction in urban areas.


Assuntos
Poluentes Atmosféricos , Poluição do Ar , Nascimento Prematuro , Poluentes Atmosféricos/efeitos adversos , Poluentes Atmosféricos/análise , Poluição do Ar/efeitos adversos , Poluição do Ar/análise , Pequim/epidemiologia , Criança , China/epidemiologia , Feminino , Humanos , Recém-Nascido , Exposição Materna/efeitos adversos , Material Particulado/efeitos adversos , Material Particulado/análise , Gravidez , Nascimento Prematuro/induzido quimicamente , Nascimento Prematuro/epidemiologia , Estudos Retrospectivos
8.
Environ Sci Pollut Res Int ; 28(23): 29445-29454, 2021 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-33555475

RESUMO

Little is known on the potential impact of temperature on respiratory morbidity, especially for children whose respiratory system can be more vulnerable to climate changes. In this time-series study, Poisson generalized additive models combined with distributed lag nonlinear models were used to assess the associations between ambient temperature and childhood respiratory morbidity. The impacts of extreme cold and hot temperatures were calculated as cumulative relative risks (cum.RRs) at the 1st and 99th temperature percentiles relative to the minimum morbidity temperature percentile. Attributable fractions of respiratory morbidity due to cold or heat were calculated for temperatures below or above the minimum morbidity temperature. Effect modifications by air pollution, age, and sex were assessed in stratified analyses. A total of 877,793 respiratory hospital visits of children under 14 years old between 2013 and 2017 were collected from Beijing Children's Hospital. Overall, we observed J-shaped associations with greater respiratory morbidity risks for exposure to lower temperatures, and higher fraction of all-cause respiratory hospital visits was caused by cold (33.1%) than by heat (0.9%). Relative to the minimum morbidity temperature (25 °C, except for rhinitis, which is 31 °C), the cum.RRs for extreme cold temperature (-6 °C) were 2.64 (95%CI: 1.51-4.61) for all-cause respiratory hospital visits, 2.73 (95%CI: 1.44-5.18) for upper respiratory infection, 2.76 (95%CI: 1.56-4.89) for bronchitis, 2.12 (95%CI: 1.30-3.47) for pneumonia, 2.06 (95%CI: 1.27-3.34) for rhinitis, and 4.02 (95%CI: 2.14-7.55) for asthma, whereas the associations between extreme hot temperature (29 °C) and respiratory hospital visits were not significant. The impacts of extreme cold temperature on asthma hospital visits were greater at higher levels of ozone (O3) exposure (> 50th percentile). Our findings suggest significantly increased childhood respiratory morbidity risks at extreme cold temperature, and the impact of extreme cold temperature on asthma hospital visits can be enhanced under higher level exposure to O3.


Assuntos
Poluição do Ar , Adolescente , Pequim/epidemiologia , Criança , China/epidemiologia , Temperatura Baixa , Hospitais , Temperatura Alta , Humanos , Temperatura
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA