Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Tipo de estudo
País/Região como assunto
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Plant Biotechnol J ; 4(6): 667-76, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17309736

RESUMO

The introgression of transgenes into wild relatives or weeds through pollen-mediated gene flow is a major concern in environmental risk assessment of transgenic crops. A large-scale (1.3-1.8 ha) rice gene flow study was conducted using transgenic rice containing the bar gene as a pollen donor and Oryza rufipogon as a recipient. There was a high frequency of transgene flow (11%-18%) at 0-1 m, with a steep decline with increasing distance to a detection limit of 0.01% by 250 m. To our knowledge, this is the highest frequency and longest distance of gene flow from transgenic rice to O. rufipogon reported so far. On the basis of these data, an adequate isolation distance from both conventional and transgenic rice should be taken for in situ conservation of common wild rice. Meanwhile, there is no evidence of transgene introgression into barnyard grass, even when it has coexisted with transgenic rice containing the bar gene for five successive years. Thus, the environmental risk of gene flow to this weedy species is of little concern.


Assuntos
Echinochloa/genética , Fluxo Gênico/fisiologia , Genoma de Planta , Oryza/genética , Plantas Geneticamente Modificadas , Poaceae/genética , Transgenes , China , Genes de Plantas , Tempo (Meteorologia)
2.
PLoS One ; 10(7): e0131455, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26134138

RESUMO

BACKGROUND: The perennial O. rufipogon (common wild rice), which is considered to be the ancestor of Asian cultivated rice species, contains many useful genetic resources, including drought resistance genes. However, few studies have identified the drought resistance and tissue-specific genes in common wild rice. RESULTS: In this study, transcriptome sequencing libraries were constructed, including drought-treated roots (DR) and control leaves (CL) and roots (CR). Using Illumina sequencing technology, we generated 16.75 million bases of high-quality sequence data for common wild rice and conducted de novo assembly and annotation of genes without prior genome information. These reads were assembled into 119,332 unigenes with an average length of 715 bp. A total of 88,813 distinct sequences (74.42% of unigenes) significantly matched known genes in the NCBI NT database. Differentially expressed gene (DEG) analysis showed that 3617 genes were up-regulated and 4171 genes were down-regulated in the CR library compared with the CL library. Among the DEGs, 535 genes were expressed in roots but not in shoots. A similar comparison between the DR and CR libraries showed that 1393 genes were up-regulated and 315 genes were down-regulated in the DR library compared with the CR library. Finally, 37 genes that were specifically expressed in roots were screened after comparing the DEGs identified in the above-described analyses. CONCLUSION: This study provides a transcriptome sequence resource for common wild rice plants and establishes a digital gene expression profile of wild rice plants under drought conditions using the assembled transcriptome data as a reference. Several tissue-specific and drought-stress-related candidate genes were identified, representing a fully characterized transcriptome and providing a valuable resource for genetic and genomic studies in plants.


Assuntos
Regulação da Expressão Gênica de Plantas , Genes de Plantas , Genoma de Planta , Oryza/genética , Estresse Fisiológico/genética , Transcriptoma , Adaptação Fisiológica/genética , Bases de Dados Genéticas , Secas , Regulação da Expressão Gênica no Desenvolvimento , Biblioteca Gênica , Sequenciamento de Nucleotídeos em Larga Escala , Anotação de Sequência Molecular , Especificidade de Órgãos , Oryza/crescimento & desenvolvimento , Folhas de Planta/genética , Folhas de Planta/crescimento & desenvolvimento , Raízes de Plantas/genética , Raízes de Plantas/crescimento & desenvolvimento , Brotos de Planta/genética , Brotos de Planta/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA