Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 46
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
J Phys Chem A ; 2024 Sep 16.
Artigo em Inglês | MEDLINE | ID: mdl-39284747

RESUMO

Three-center two-electron bridging bonding plays a vital role in rationalizing structures and stabilities of certain molecules. Herein, the π electron rule of pyrene (C16H10) was unraveled based on a newly proposed two-dimensional (2D) superatomic-molecule theory, where the superatomic sextet rule was regarded as a π electron counting target. C16H10 can be taken as a ◊N2◊F2 superatomic molecule, where ◊N and ◊F denote 2D superatoms bearing 3π and 5π electrons, respectively. Interestingly, it represents the first 2D superatomic halogen-bridge molecule, which realizes π electronic shell-closure via two three-supercenter two-electron bridging bonds. Additionally, a N-doped nanoporous graphene with a wide band gap (1.22 eV) was designed based on C16H10, which can be considered as a periodic aggregate of 2D superatomic wires composed of 2π-◊C and bridging ◊F superatoms. This work enriches the 2D superatomic-molecule chemistry and provides a practicable bottom-up assemble approach to obtain 2D functional materials with tunable band gaps.

2.
Phys Chem Chem Phys ; 25(12): 8439-8445, 2023 Mar 22.
Artigo em Inglês | MEDLINE | ID: mdl-36916456

RESUMO

Phenalenyl (C13H9) is the smallest triangular unit of a graphene nanosheet, and has been experimentally verified to be stable in radical (C13H9˙), cationic (C13H9+), and anionic (C13H9-) states. All these three species feature high symmetry and stability as well as delocalized π electrons, a visible sign of aromaticity, but their aromatic origin remains a challenge. This work reports new chemical insights into the π electrons of C13H9+/0/- and deciphers their aromaticity using a recently emerged two-dimensional (2D) superatomic-molecule theory. 12π-C13H9+, 13π-C13H9˙, and 14π-C13H9- are seen as triangular 2D superatomic molecules ◊O3, ◊O3-, and ◊O32-, respectively, where ◊O denotes a 2D benzenoid superatom bearing 4 π electrons. Visualized superatomic Lewis structures show that each ◊O can dynamically adjust its π electrons to satisfy the superatomic sextet rule of benzene via superatomic lone pairs and covalent bonds. C13H9+/0/- are representatives of adaptive aromaticity in the 2D superatomic-molecule system, exhibiting flexible π electronic structures to achieve shell-closure. Moreover, we specially adopt a progressive methodology to study the evolution of 2D periodic materials, by applying this theory to the similar family of C6H3N7, C18H6N22 and graphitic carbon nitride (g-C3N4) crystals, and meanwhile accounting for the special stability of g-C3N4. This work enriches 2D superatomic bonding chemistry and provides a useful strategy to design new 2D functional nanostructured materials.

3.
J Phys Chem A ; 127(36): 7487-7495, 2023 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-37669444

RESUMO

The aromaticity of π-conjugated compounds has long been a confusing issue. Based on a recently emerged two-dimensional (2D) superatomic-molecule theory, a unified rule was built to decipher the aromaticity of cyclic superatomic molecules of π-conjugated compounds from the chemical bonding perspective. Herein, a series of planar [n]helicenes and [n]circulenes, composed of benzene, thiophene, or furfuran, are systemically studied and seen as superatomic molecules ◊On-2◊F2 or ◊On, where superatoms ◊F and ◊O denote π-conjugated units with 5 and 4 π electrons, respectively. The ascertained superatomic Lewis structures intuitively display aromaticity with each basic unit meeting the superatomic sextet rule of benzene, similar to classical valence bond theory, which is favored by the synthesized complex π-conjugated compounds comprising different numbers and kinds of subrings. The evolutionary trend of ring currents and chemical bonding suggests a local ribbon-like aromaticity in these π-conjugated compounds. Moreover, nonplanar helical π-conjugated compounds have the potential to evolve into spring-like periodic materials with excellent physical properties.

4.
J Chem Phys ; 159(17)2023 Nov 07.
Artigo em Inglês | MEDLINE | ID: mdl-37916593

RESUMO

Traditional hydrogen bonds are well-known to exhibit directionality and saturation. By contrast, gold involved hydrogen bonds (GHBs) have been extensively studied but remain lack of in-depth understanding towards the intrinsic nature and saturation property. This work exemplifies three series of complexes: [L-Au-L]-⋯(HF)n (L = H, CH3, (CH3)3; n = 1-8) containing GHBs to dig into the intrinsic nature with the aid of multiple theoretical analysis methods, finding that the formation of GHB is highly subject to orbital interactions along with steric hindrance. Moreover, the saturation level of GHBs largely depends on the ligand attached to the gold center, since different ligands typically possess varying electron-giving ability and steric volume. This work confirms the coexistence of as many as 6 GHBs for one Au atom and thoroughly studies the saturation level of GHBs, which will provide new insights into GHBs and facilitate future synthesis of more complicated gold complexes.

5.
J Chem Phys ; 159(3)2023 Jul 21.
Artigo em Inglês | MEDLINE | ID: mdl-37466228

RESUMO

We report a joint negative ion photoelectron spectroscopy (NIPES) and quantum chemical computational study on glycine-chloride/bromide complexes (denoted Gly·X-, X = Cl/Br) in close comparison to the previously studied Gly·I- cluster ion. Combining experimental NIPE spectra and theoretical calculations, various Gly·X- complexes were found to adopt the same types of low-lying isomers, albeit with different relative energies. Despite more congested spectral profiles for Gly·Cl- and Gly·Br-, spectral assignments were accomplished with the guidance of the knowledge learned from Gly·I-, where a larger spin-orbit splitting of iodine afforded well-resolved, recognizable spectral peaks. Three canonical plus one zwitterionic isomer for Gly·Cl- and four canonical conformers for Gly·Br- were experimentally identified and characterized in contrast to the five canonical ones observed for Gly·I- under similar experimental conditions. Taken together, this study investigates both genericity and variations in binding patterns for the complexes composed of glycine and various halides, demonstrating that iodide-tagging is an effective spectroscopic means to unravel diverse ion-molecule binding motifs for cluster anions with congested spectral bands by substituting the respective ion with iodide.

6.
Inorg Chem ; 61(46): 18769-18778, 2022 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-36356222

RESUMO

Reaction of Li2C2 with elemental selenium in a molar ratio of 1:2 in liquid ammonia led to the formation of the ammoniate Li2[SeC2Se]·2NH3. Its crystal structure was solved and refined from high-resolution synchrotron powder diffraction data (P21/c, Z = 4). It contains the -Se-C≡C-Se- anion, unprecedented in a crystalline material, whose existence was corroborated by IR/Raman spectra and electronic-structure theory, showing an almost perfect agreement with calculated spectra. Elaborated magnetic-bottle and velocity-map imaging photoelectron spectroscopic investigations show that the -Se-C≡C-Se• radical anion can be transferred to the gas phase, where it was analyzed by NIPE (Negative Ion Photoelectron) and VMI (Velocity-Map Imaging) spectra, which correlate nicely with simulated spectra based on 2Πu → 3Σg- and 2Πu → 1Σg+ transitions including spin-orbit couplings.

7.
Ecotoxicol Environ Saf ; 238: 113608, 2022 Jun 15.
Artigo em Inglês | MEDLINE | ID: mdl-35525112

RESUMO

Hexavalent chromium Cr(VI) is a well-known environmental toxic metal that causes reprotoxicity in pregnant females. There are currently no appropriate interventions or treatments for Cr(VI) exposure during pregnancy. Herein, the protective effect of melatonin (MLT) against Cr(VI)-induced reprotoxicity is investigated by administrating MLT to pregnant mice exposed to Cr(VI). The results indicate that MLT effectively alleviates Cr(VI)-induced adverse pregnancy outcomes, restoring the decreased fetal weight and increased fetal resorption and malformation caused by Cr(VI) exposure to normal levels. MLT reduces the negative effects of Cr(VI) on follicular atresia and the development of primordial follicle in the maternal ovarian, thereby mitigating the decline in the reserve of primordial follicles. MLT alleviates Cr(VI)-induced oxidative stress, hence reducing the excessive accumulation of malondialdehyde in the maternal ovary. MLT inhibits Cr(VI)-induced apoptosis of ovarian granulosa cells and the expression of cleaved caspase-3 in the ovary. MLT reduces the increase in serum follicle-stimulating hormone caused by Cr(VI) exposure, while elevating anti-Mullerian hormone levels. We demonstrate that MLT reverses Cr(VI)-induced reprotoxicity in pregnant mice, opening up a new avenue for treating reproductive defects caused by environmental stress.


Assuntos
Melatonina , Animais , Cromo/metabolismo , Feminino , Atresia Folicular , Melatonina/metabolismo , Melatonina/farmacologia , Camundongos , Ovário , Gravidez , Resultado da Gravidez
8.
Molecules ; 27(5)2022 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-35268616

RESUMO

Cancers have always been the most difficult to fight, the treatment of cancer is still not considered. Thus, exploring new anticancer drugs is still imminent. Traditional Chinese medicine has played an important role in the treatment of cancer. Polyphenol oxidase (PPO) extracted from Edible mushroom has many related reports on its characteristics, but its role in cancer treatment is still unclear. This study aims to investigate the effects of PPO extracted from Edible mushroom on the proliferation, migration, invasion, and apoptosis of cancer cells in vitro and explore the therapeutic effects of PPO on tumors in vivo. A cell counting kit-8 (CCK8) assay was used to detect the effect of PPO on the proliferation of cancer cells. The effect of PPO on cancer cell migration ability was detected by scratch test. The effect of PPO on the invasion ability of cancer cells was detected by a transwell assay. The effect of PPO on the apoptosis of cancer cells was detected by flow cytometry. Female BALB/c mice (18-25 g, 6-8 weeks) were used for in vivo experiments. The experiments were divided into control group, model group, low-dose group (25 mg/kg), and high-dose group (50 mg/kg). In vitro, PPO extracted from Edible mushroom significantly inhibited the proliferation, migration, and invasion capability of breast cancer cell 4T1, lung cancer cell A549, and prostate cancer cell C4-2, and significantly promoted the apoptosis of 4T1, A549, and C4-2. In vivo experiments showed PPO inhibitory effect on tumor growth. Collectively, the edible fungus extract PPO could play an effective role in treating various cancers, and it may potentially be a promising agent for treating cancers.


Assuntos
Catecol Oxidase
9.
Phys Chem Chem Phys ; 23(24): 13447-13457, 2021 Jun 23.
Artigo em Inglês | MEDLINE | ID: mdl-34008657

RESUMO

A fundamental understanding of cyclodextrin-closo-dodecaborate inclusion complexes is of great interest in supramolecular chemistry. Herein, we report a systematic investigation on the electronic structures and intramolecular interactions of perhalogenated closo-dodecaborate dianions B12X122- (X = F, Cl, Br and I) binding to α-, ß-, and γ-cyclodextrins (CDs) in the gas phase using combined negative ion photoelectron spectroscopy (NIPES) and density functional theory (DFT) calculations. The vertical detachment energy (VDE) of each complex and electronic stabilization of each dianion due to the CD binding (ΔVDE, relative to the corresponding isolated B12X122-) are determined from the experiments along α-, ß- and γ-CD in the form of VDE (ΔVDE): 4.00 (2.10), 4.33 (2.43), and 4.30 (2.40) eV in X = F; 4.09 (1.14), 4.64 (1.69), and 4.69 (1.74) eV in X = Cl; 4.11 (0.91), 4.58 (1.38), and 4.70 (1.50) eV in X = Br; and 3.54 (0.74), 3.88 (1.08), and 4.05 (1.25) eV in X = I, respectively. All complexes have significantly higher VDEs than the corresponding isolated dodecaborate dianions with ΔVDE spanning from 0.74 eV at (α, I) to 2.43 eV at (ß, F), sensitive to both host CD size and guest substituent X. DFT-optimized complex structures indicate that all B12X122- prefer binding to the wide openings of CDs with the insertion depth and binding motif strongly dependent on the CD size and halogen X. Dodecaborate anions with heavy halogens, i.e., X = Cl, Br, and I, are found outside of α-CD, while B12F122- is completely wrapped by γ-CD. Partial embedment of B12X122- into CDs is observed for the other complexes via multipronged B-XH-O/C interlocking patterns. The simulated spectra based on the density of states agree well with those of the experiments and the calculated VDEs well reproduce the experimental trends. Molecular orbital analyses suggest that the spectral features at low binding energies originated from electrons detached from the dodecaborate dianion, while those at higher binding energies are derived from electron detachment from CDs. Energy decomposition analyses reveal that the electrostatic interaction plays a dominating role in contributing to the host-guest interactions for the X = F series partially due to the formation of a O/C-HX-B hydrogen bonding network, and the dispersion forces gradually become important with the increase of halogen size.

10.
J Phys Chem A ; 125(18): 3928-3935, 2021 May 13.
Artigo em Inglês | MEDLINE | ID: mdl-33949195

RESUMO

Six monosolvated cyanate analogue clusters ECX-·Sol (ECX- = NCSe-, AsCSe-, and AsCS-; Sol = H2O and CH3CN) were investigated using negative ion photoelectron spectroscopy (NIPES). NIPES experiments show that these clusters possess similar spectra overall compared to their respective isolated ECX- anions but shift to higher electron binding energy with CH3CN solvent, stabilizing the excess electrons slightly more than H2O. For the ECX-·H2O series, vertical detachment energies and their increments relative to the bare species are measured to be 3.700/0.370, 3.085/0.415, and 3.085/0.430 eV for NCSe-, AsCSe- and AsCS-, respectively, while the corresponding values in the ECX-·CH3CN series are 3.835/0.505, 3.145/0.475, and 3.135/0.480 eV. Ab initio electronic structure calculations indicate that the excess charges were located at the terminal N and Se atoms in NCSe- and migrated to the central C atom in AsCSe- and AsCS-. For NCSe-, the solvation is driven by the interactions with the two negatively charged terminal ends, while for AsCSe- and AsCS-, the solvation revolves around the interactions with the central C atom, where all the excess negative charge is concentrated. Two nearly degenerate isomers for NCSe-·H2O are identified, one forming a single strong N···H-O hydrogen bond (HB) and the other featuring a bidentate HB with two hydroxyl H atoms pointing to N and Se ends. In contrast, the negative central C atom in AsCSe-/AsCS- allows the formation of a bifurcated HB with H2O. Similar effects are observed for the acetonitrile case, in which the three H atoms of the methyl group interact with the two negatively charged terminal ends in NCSe-, while preferring to bind to the central negative carbon atom in AsCSe-/AsCS-. The different binding motifs derived in this work may suggest different solvation properties in NCSe- versus AsCSe-/AsCS- with the former anion leading to asymmetric solvation at the N end of the solute, while the latter species creates more "isotropic" solvation around the central C equatorial plane.

11.
J Phys Chem A ; 125(3): 746-753, 2021 Jan 28.
Artigo em Inglês | MEDLINE | ID: mdl-33295772

RESUMO

A great deal of effort has been focused on developing a metal-free catalytic system for epoxidation of unreactive alkenes. Fluoroketones are thought as remarkably promising catalysts for epoxidation reactions. The combination of fluorinated alcohols and catalytic amounts of hexafluoroacetone (HFA) gives a versatile and effective medium for epoxidation of various olefins with hydrogen peroxide. However, the fundamental physicochemical properties of HFA remained largely unclear, although they were very important to understand the related interactions. Here, we performed a joint study on the electron affinity and electronic structure of HFA employing negative ion photoelectron (NIPE) spectroscopy and quantum chemistry calculations. Two distinct bands with complicated vibrational progressions were observed in the 193 nm NIPE spectrum. The adiabatic/vertical detachment energies (ADE/VDE) were derived to be 1.42/2.06 and 4.43/4.86 eV for the ground singlet state and excited triplet state, respectively. Using the optimized geometries and vibrational frequencies of the anion and the neutral, the Franck-Condon factors were calculated for electron detachments to produce HFA in its lowest singlet and triplet states. Good agreements are obtained hereby for both bands between the experimental and calculated NIPE spectra, when taking into account combination vibrational excitations, unequivocally revealing that HFA possesses a singlet ground state with a giant singlet-triplet energy difference (ΔEST). The electron affinity (EA) and ΔEST of HFA were therefore determined to be EA = 1.42 ± 0.02 eV and ΔEST = -3.01 eV.

12.
Chemistry ; 26(64): 14594-14601, 2020 Nov 17.
Artigo em Inglês | MEDLINE | ID: mdl-33017100

RESUMO

Nitro-functionalized undecahalogenated closo-dodecaborates [B12 X11 (NO2 )]2- were synthesized in high purities and characterized by NMR, IR, and Raman spectroscopy, single crystal X-diffraction, mass spectrometry, and gas-phase ion vibrational spectroscopy. The NO2 substituent leads to an enhanced electronic and electrochemical stability compared to the parent perhalogenated [B12 X12 ]2- (X=F-I) dianions evidenced by photoelectron spectroscopy, cyclic voltammetry, and quantum-chemical calculations. The stabilizing effect decreases from X=F to X=I. Thermogravimetric measurements of the salts indicate the loss of the nitric oxide radical (NO. ). The homolytic NO. elimination from the dianion under very soft collisional excitation in gas-phase ion experiments results in the formation of the radical [B12 X11 O]2-. . Theoretical investigations suggest that the loss of NO. proceeds via the rearrangement product [B12 X11 (ONO)]2- . The O-bonded nitrosooxy structure is thermodynamically more stable than the N-bonded nitro structure and its formation by radical recombination of [B12 X11 O]2-. and NO. is demonstrated.

13.
Phys Chem Chem Phys ; 22(35): 19459-19467, 2020 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-32578641

RESUMO

This work shows elusive carbonic acid being effectively stabilized in the gas phase by interacting with halide anions X- (X = F, Cl, Br, and I). The formed H2CO3·X- complexes, characterized by negative ion photoelectron spectroscopy and ab initio calculations, all contain intact trans-trans carbonic acid binding onto the respective halide via two identical strong ionic O-HX- hydrogen bonds. For X = Cl, Br, and I, the complex spectra exhibit the corresponding X- signature by simply shifting to the higher binding energy side, while an extremely 2 eV wide broader band is observed for X = F. This spectroscopic evidence indicates that an excess electron is removed from each halide in the former case, while a proton is transferred from carbonic acid to fluoride upon electron detachment for the latter. The above H2CO3·X- structures as well as those of the previously studied H2SO4·X- along the homologous halogen series cannot be explained using the proton affinity (PA) argument. Instead, a qualitative correlation is found between these structural motifs and the constituent acid pKa values, strongly suggesting that pKa is a more suitable factor to predict correct acid-base chemistry between these diprotic oxyacids and halides.

14.
Phys Chem Chem Phys ; 22(14): 7193-7200, 2020 Apr 08.
Artigo em Inglês | MEDLINE | ID: mdl-32195495

RESUMO

We report a joint negative ion photoelectron spectroscopy (NIPES) and computational study on the electronic structures and noncovalent interactions of a series of cyclodextrin-closo-dodecaborate dianion complexes, χ-CD·B12X122- (χ = α, ß, γ; X = H, F). The measured vertical/adiabatic detachment energies (VDEs/ADEs) are 1.15/0.93, 3.55/3.20, 3.90/3.60, and 3.85/3.60 eV for B12H122- and its α-, ß-, γ-CD complexes, respectively; while the corresponding values are 1.90/1.70, 4.00/3.60, 4.33/3.95, and 4.30/3.85 eV for the X = F case. These results show that the inclusion of B12X122- into the CD cavities greatly increases the electronic stability of the dianions. The effect of electronic stabilization for ß-CD is roughly the same as for γ-CD, both being considerably stronger than that for α-CD. Density functional theory (DFT) based geometry optimization reveals that B12X122- are inserted into CDs increasingly deeper from α-CD to γ-CD. The calculated VDEs and ADEs agree with the experiments well, particularly, reproducing the electron binding energy (EBE) trends. The molecular orbital analyses indicate that the most loosely bound photodetached electrons originate from the guest B12X122- moieties. In addition to a shift of all signals to a larger EBE, significant changes in the signal patterns are observed. At low EBE, this is due to the splitting of highly degenerate B12X122- orbitals, while at high EBE, photodetachment from CD oxygens contributes to the new bands. The guest B12X122- and host CD noncovalent, size-specific interaction based on the independent gradient model (IGM) and energy decomposition analysis (EDA) is dominated by electrostatic interactions. The analysis further unravels unambiguously the existence of dihydrogen bonding and how it affects the total energy that stabilizes the host-guest complexes of CDs·B12H122- compared to the general hydrogen bonding interaction in CDs·B12F122-. This work clearly exhibits strong influences on the electronic structures of dodecaborates upon clustering with CDs, with both size (α-, ß-, and γ-) and molecular (X = H or F) specificities, thus providing critical molecular-level information on the cyclodextrin-closo-dodecaborate interactions of interest to medical applications, e.g., boron neutron capture therapy.


Assuntos
Ânions/química , Compostos de Boro/química , Espectroscopia Fotoeletrônica , Química Computacional , Estrutura Molecular
15.
Phys Chem Chem Phys ; 22(31): 17713-17724, 2020 Aug 21.
Artigo em Inglês | MEDLINE | ID: mdl-32728676

RESUMO

Electronic structure, collision-induced dissociation (CID) and bond properties of closo-[B6X6]2- (X = Cl-I) are investigated in direct comparison with their closo-[B12X12]2- analogues. Photoelectron spectroscopy (PES) and theoretical investigations reveal that [B6X6]2- dianions are electronically significantly less stable than the corresponding [B12X12]2- species. Although [B6Cl6]2- is slightly electronically unstable, [B6Br6]2- and [B6I6]2- are intrinsically stable dianions. Consistent with the trend in the electron detachment energy, loss of an electron (e- loss) is observed in CID of [B6X6]2- (X = Cl, Br) but not for [B6I6]2-. Halogenide loss (X- loss) is common for [B6X6]2- (X = Br, I) and [B12X12]2- (X = Cl, Br, I). Meanwhile, X˙ loss is only observed for [B12X12]2- (X = Br, I) species. The calculated reaction enthalpies of the three competing dissociation pathways (e-, X- and X˙ loss) indicated a strong influence of kinetic factors on the observed fragmentation patterns. The repulsive Coulomb barrier (RCB) determines the transition state for the e- and X- losses. A significantly lower RCB for X- loss than for e- loss was found in both experimental and theoretical investigations and can be rationalized by the recently introduced concept of electrophilic anions. The positive reaction enthalpies for X- losses are significantly lower for [B6X6]2- than for [B12X12]2-, while enthalpies for X˙ losses are higher. These observations are consistent with a difference in bond character of the B-X bonds in [B6X6]2- and [B12X12]2-. A complementary bonding analysis using QTAIM, NPA and ELI-D based methods suggests that B-X bonds in [B12X12]2- have a stronger covalent character than in [B6X6]2-, in which X has a stronger halide character.

16.
J Phys Chem A ; 124(16): 3214-3219, 2020 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-32250629

RESUMO

The recently synthesized acetylide compound KSeCCH containing the main group element selenium within the novel and in crystalline form unprecedented [SeCCH]- anion was successfully investigated in the gas phase by high-resolution velocity-map imaging (VMI) and magnetic-bottle (MB) photoelectron spectroscopy coupled with an electrospray ionization source. Both VMI and MB spectra exhibited identical electron affinities (EA, 2.517 ± 0.002 eV), spin-orbit coupling (SOC) splittings (1492 ± 20 cm-1), and Se-C stretching frequencies (573 ± 20 cm-1) of the corresponding neutral tetra-atomic radical [SeCCH]• with the VMI spectrum possessing six times higher spectral resolution compared with the MB spectrum. These experimental values were well reproduced by calculations at the CCSD(T) level, in which both the isolated [SeCCH]- anion and the [SeCCH]• radical adopted linear geometries. The simulated spectra based on the calculated Franck-Condon factors, the SOC splitting, and the experimental line width matched well with the measured spectra. Furthermore, comparisons of the EA and SOC splitting values with the previously reported isolobal species [SeCN]• are also made and discussed. The decrease in the EA and SOC splitting of [SeCCH]• is ascribed to the differences in the electronegativities between C and N atoms as well as the electron density on the Se atom in its singly occupied molecular orbital (SOMO).

17.
J Phys Chem A ; 124(10): 2036-2045, 2020 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-32077296

RESUMO

The interactions between hexafluoroisopropanol (HFIP) and halogen anions X- (F-, Cl-, Br-, and I-) have been investigated using negative ion photoelectron (NIPE) spectroscopy and ab initio calculations. The measured NIPE spectrum of each [HFIP·X]- (X = Cl, Br, and I) complex shows a pattern identical to the corresponding X- by shifting to the high electron binding energy side, indicative of the formation of the [HFIP···X-] structure in which X- interacts with HFIP via charge-dipole interactions. However, the spectrum of [HFIP·F]- appears completely different from that of F- and is more similar to the spectrum of the deprotonated HFIP anion (HFIP-H-). The geometry and electron density calculations indicate that a neutral HF molecule is formed upon HFIP interacting with F- via proton transfer, rendering a stable structure of [HFIP-H···HF]-. Two conformers of [HFIP-H·HF]- with HFIP being in synperiplanar and antiperiplanar configurations, respectively, are observed, providing direct experimental evidences to show the distinctly different and orientation-specific interactions between HFIP and halide anions.

18.
J Phys Chem A ; 124(11): 2264-2269, 2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32111117

RESUMO

A series of heteronuclear group 5 metal-nickel carbonyls MNi(CO)7- (M = V, Nb, Ta) have been generated via a laser ablation ion source and studied by photoelectron velocity-map imaging spectroscopy. Quantum chemical calculations have been performed to probe the electronic and geometric structures and help to assign the spectra. The adiabatic detachment energies (ADEs) and vertical detachment energies (VDEs) are deduced from spectra to be 3.40/3.58, 3.34/3.55, 3.30/3.50 eV, which are consistent with quantum chemical computational results. The MNi(CO)7- (M = V, Nb, Ta) consists of three bridging carbonyls, one carbonyl terminally bonded to the Ni atom and three carbonyls terminally bonded to the M (M = V, Nb, Ta) atom. These geometries are different from homobinuclear Cr2(CO)7+, Ni2(CO)7+, Pd2(CO)7+, and Fe2(CO)7- and heterobinuclear CuFe(CO)7-, CoZn(CO)7+, and CO is largely activated by a bridging coordination mode. The experimental and theoretical results would provide important information to understand the chemisorbed CO molecules on alloy surfaces or interfaces, which is of great significance to elucidate CO molecule activation processes.

19.
Chemistry ; 25(58): 13275-13279, 2019 Oct 17.
Artigo em Inglês | MEDLINE | ID: mdl-31398268

RESUMO

Manipulation of the emerging anion-π interactions in a highly cooperative manner through sophisticated host design represents a very challenging task. In this work, unprecedented tetrahedral anion-π receptors have been successfully constructed for complementary accommodation of tetrahedral and relevant anions. The synthesis was achieved by a macrocycle-directed approach by using large macrocycle precursors bearing four reactive sites, which enabled a kinetic-favored pathway and afforded the otherwise inaccessible tetrahedral cages in considerable yields. Crystal structure suggested that the tetrahedral cages have an enclosed three-dimensional cavity surrounded by four electron-deficient triazine faces in a tetrahedral array. The complementary accommodation of a series of tetrahedral and relevant anions including BF4 - , ClO4 - , H2 PO4 - , HSO4 - , SO4 2- and PF6 - was revealed by ESI-MS and DFT calculations. Crystal structures of ClO4 - and PF6 - complexes showed that the anion was nicely encapsulated within the tetrahedral cavity with up to quadruple cooperative anion-π interactions by an excellent shape and size match. The strong anion-π binding was further confirmed by negative ion photoelectron spectroscopy measurements.


Assuntos
Compostos Macrocíclicos/química , Triazinas/química , Ânions/química , Boratos/química , Reagentes de Ligações Cruzadas/química , Cristalização , Teoria da Densidade Funcional , Estrutura Molecular , Percloratos/química , Espectrometria de Massas por Ionização por Electrospray , Sulfatos/química
20.
Chemistry ; 25(14): 3560-3574, 2019 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-30600853

RESUMO

High-yield syntheses up to molar scales for salts of [BH(CN)3 ]- (2) and [BH2 (CN)2 ]- (3) starting from commercially available Na[BH4 ] (Na5), Na[BH3 (CN)] (Na4), BCl3 , (CH3 )3 SiCN, and KCN were developed. Direct conversion of Na5 into K2 was accomplished with (CH3 )3 SiCN and (CH3 )3 SiCl as a catalyst in an autoclave. Alternatively, Na5 is converted into Na[BH{OC(O)R}3 ] (R=alkyl) that is more reactive towards (CH3 )3 SiCN and thus provides an easy access to salts of 2. Some reaction intermediates were identified, for example, Na[BH(CN){OC(O)Et}2 ] (Na7 b) and Na[BH(CN)2 {OC(O)Et}] (Na8 b). A third entry to 2 and 3 uses ether adducts of BHCl2 or BH2 Cl such as the commercial 1,4-dioxane adducts that react with KCN and (CH3 )3 SiCN. Alkali metal salts of 2 and 3 are convenient starting materials for organic salts, especially for low viscosity ionic liquids (ILs). [EMIm]3 has the lowest viscosity and highest conductivity with 10.2 mPa s and 32.6 mS cm-1 at 20 °C known for non-protic ILs. The ILs are thermally, chemically, and electrochemically robust. These properties are crucial for applications in electrochemical devices, for example, dye-sensitized solar cells (Grätzel cells).

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA