Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 10 de 10
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Geophys Res Lett ; 47(22): e2020GL089711, 2020 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-33281243

RESUMO

African dust exhibits strong variability on a range of time scales. Here we show that the interhemispheric contrast in Atlantic SST (ICAS) drives African dust variability at decadal to millennial timescales, and the strong anthropogenic increase of the ICAS in the future will decrease African dust loading to a level never seen during the Holocene. We provide a physical framework to understand the relationship between the ICAS and African dust activity: positive ICAS anomalies push the Intertropical Convergence Zone (ITCZ) northward and decrease surface wind speed over African dust source regions, which reduces dust emission and transport. It provides a unified framework for and is consistent with relationships in the literature. We find strong observational and proxy-record support for the ICAS-ITCZ-dust relationship during the past 160 and 17,000 years. Model-projected anthropogenic increase of the ICAS will reduce African dust by as much as 60%, which has broad consequences.

2.
Geophys Res Lett ; 45(9): 4438-4445, 2018 May 16.
Artigo em Inglês | MEDLINE | ID: mdl-30034051

RESUMO

Modeling studies have shown that cloud feedbacks are sensitive to the spatial pattern of sea surface temperature (SST) anomalies, while cloud feedbacks themselves strongly influence the magnitude of SST anomalies. Observational counterparts to such patterned interactions are still needed. Here we show that distinct large-scale patterns of SST and low-cloud cover (LCC) emerge naturally from objective analyses of observations and demonstrate their close coupling in a positive local SST-LCC feedback loop that may be important for both internal variability and climate change. The two patterns that explain the maximum amount of covariance between SST and LCC correspond to the Interdecadal Pacific Oscillation and the Atlantic Multidecadal Oscillation, leading modes of multidecadal internal variability. Spatial patterns and time series of SST and LCC anomalies associated with both modes point to a strong positive local SST-LCC feedback. In many current climate models, our analyses suggest that SST-LCC feedback strength is too weak compared to observations. Modeled local SST-LCC feedback strength affects simulated internal variability so that stronger feedback produces more intense and more realistic patterns of internal variability. To the extent that the physics of the local positive SST-LCC feedback inferred from observed climate variability applies to future greenhouse warming, we anticipate significant amount of delayed warming because of SST-LCC feedback when anthropogenic SST warming eventually overwhelm the effects of internal variability that may mute anthropogenic warming over parts of the ocean. We postulate that many climate models may be underestimating both future warming and the magnitude of modeled internal variability because of their weak SST-LCC feedback.

3.
Geophys Res Lett ; 43(3): 1349-1356, 2016 Feb 16.
Artigo em Inglês | MEDLINE | ID: mdl-32818003

RESUMO

The Atlantic Multidecadal Oscillation (AMO) is characterized by a horseshoe pattern of sea surface temperature (SST) anomalies and has a wide range of climatic impacts. While the tropical arm of AMO is responsible for many of these impacts, it is either too weak or completely absent in many climate model simulations. Here we show, using both observational and model evidence, that the radiative effect of positive low cloud and dust feedbacks is strong enough to generate the tropical arm of AMO, with the low cloud feedback more dominant. The feedbacks can be understood in a consistent dynamical framework: weakened tropical trade wind speed in response to a warm middle latitude SST anomaly reduces dust loading and low cloud fraction over the tropical Atlantic, which warms the tropical North Atlantic SST. Together they contribute to appearance of the tropical arm of AMO. Most current climate models miss both the critical wind speed response and two positive feedbacks though realistic simulations of them may be essential for many climatic studies related to the AMO.

4.
Commun Earth Environ ; 5(1): 281, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38826490

RESUMO

Human activities affect the Earth's climate through modifying the composition of the atmosphere, which then creates radiative forcing that drives climate change. The warming effect of anthropogenic greenhouse gases has been partially balanced by the cooling effect of anthropogenic aerosols. In 2020, fuel regulations abruptly reduced the emission of sulfur dioxide from international shipping by about 80% and created an inadvertent geoengineering termination shock with global impact. Here we estimate the regulation leads to a radiative forcing of +0.2±0.11Wm-2 averaged over the global ocean. The amount of radiative forcing could lead to a doubling (or more) of the warming rate in the 2020 s compared with the rate since 1980 with strong spatiotemporal heterogeneity. The warming effect is consistent with the recent observed strong warming in 2023 and expected to make the 2020 s anomalously warm. The forcing is equivalent in magnitude to 80% of the measured increase in planetary heat uptake since 2020. The radiative forcing also has strong hemispheric contrast, which has important implications for precipitation pattern changes. Our result suggests marine cloud brightening may be a viable geoengineering method in temporarily cooling the climate that has its unique challenges due to inherent spatiotemporal heterogeneity.

5.
Sci Adv ; 9(45): eadh7716, 2023 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-37939179

RESUMO

Aerosols cool Earth's climate indirectly by increasing low cloud brightness and their coverage (Cf), constituting the aerosol indirect forcing (AIF). The forcing partially offsets the greenhouse warming and positively correlates with the climate sensitivity. However, it remains highly uncertain. Here, we show direct observational evidence for strong forcing from Cf adjustment to increased aerosols and weak forcing from cloud liquid water path adjustment. We estimate that the Cf adjustment drives between 52% and 300% of additional forcing to the Twomey effect over the ocean and a total AIF of -1.1 ± 0.8 W m-2. The Cf adjustment follows a power law as a function of background cloud droplet number concentration, Nd. It thus depends on time and location and is stronger when Nd is low. Cf only increases substantially when background clouds start to drizzle, suggesting a role for aerosol-precipitation interactions. Our findings highlight the Cf adjustment as the key process for reducing the uncertainty of AIF and thus future climate projections.

6.
Sci Adv ; 8(29): eabn7988, 2022 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-35867791

RESUMO

Ship-tracks are produced by ship-emitted aerosols interacting with low clouds. Here, we apply deep learning models on satellite data to produce the first global climatology map of ship-tracks. We show that ship-tracks are at the nexus of cloud physics, maritime shipping, and fuel regulation. Our map captures major shipping lanes while missing others because of background conditions. Ship-track frequency is more than 10 times higher than a previous survey, and its interannual fluctuations reflect variations in cross-ocean trade, shipping activity, and fuel regulations. Fuel regulation can alter both detected frequency and shipping routes due to cost. The 2020 fuel regulation, together with the coronavirus disease 2019 pandemic, reduced ship-track frequency to its lowest level in recent decades across the globe and may have ushered in an era of low frequency. The regulation reduces the aerosol indirect forcing from ship emissions by 46% or between 0.02 and 0.27 W m-2 given its current estimates.

7.
Atmos Chem Phys ; 22(1): 641-674, 2022 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-35136405

RESUMO

Aerosol-cloud interactions (ACIs) are considered to be the most uncertain driver of present-day radiative forcing due to human activities. The nonlinearity of cloud-state changes to aerosol perturbations make it challenging to attribute causality in observed relationships of aerosol radiative forcing. Using correlations to infer causality can be challenging when meteorological variability also drives both aerosol and cloud changes independently. Natural and anthropogenic aerosol perturbations from well-defined sources provide "opportunistic experiments" (also known as natural experiments) to investigate ACI in cases where causality may be more confidently inferred. These perturbations cover a wide range of locations and spatiotemporal scales, including point sources such as volcanic eruptions or industrial sources, plumes from biomass burning or forest fires, and tracks from individual ships or shipping corridors. We review the different experimental conditions and conduct a synthesis of the available satellite datasets and field campaigns to place these opportunistic experiments on a common footing, facilitating new insights and a clearer understanding of key uncertainties in aerosol radiative forcing. Cloud albedo perturbations are strongly sensitive to background meteorological conditions. Strong liquid water path increases due to aerosol perturbations are largely ruled out by averaging across experiments. Opportunistic experiments have significantly improved process-level understanding of ACI, but it remains unclear how reliably the relationships found can be scaled to the global level, thus demonstrating a need for deeper investigation in order to improve assessments of aerosol radiative forcing and climate change.

8.
Atmos Chem Phys ; 20(1): 139-161, 2020 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33204243

RESUMO

Emissions and long-range transport of mineral dust and combustion-related aerosol from burning fossil fuels and biomass vary from year to year, driven by the evolution of the economy and changes in meteorological conditions and environmental regulations. This study offers both satellite and model perspectives on the interannual variability and possible trends of combustion aerosol and dust in major continental outflow regions over the past 15 years (2003-2017). The decade-long record of aerosol optical depth (AOD, denoted as τ), separately for combustion aerosol (τ c) and dust (τ d), over global oceans is derived from the Collection 6 aerosol products of the Moderate Resolution Imaging Spectroradiometer (MODIS) onboard both Terra and Aqua. These MODIS Aqua datasets, complemented by aerosol source-tagged simulations using the Community Atmospheric Model version 5 (CAM5), are then analyzed to understand the interannual variability and potential trends of τ c and τ d in the major continental outflows. Both MODIS and CAM5 consistently yield a similar decreasing trend of -0.017 to -0.020 per decade for τ c over the North Atlantic Ocean and the Mediterranean Sea that is attributable to reduced emissions from North America and Europe, respectively. On the contrary, both MODIS and CAM5 display an increasing trend of +0.017 to +0.036 per decade for τ c over the tropical Indian Ocean, the Bay of Bengal, and the Arabian Sea, which reflects the influence of increased anthropogenic emissions from South Asia and the Middle East in the last 2 decades. Over the northwestern Pacific Ocean, which is often affected by East Asian emissions of pollution and dust, the MODIS retrievals show a decreasing trend of -0.021 per decade for τ c and -0.012 per decade for τ d, which is, however, not reproduced by the CAM5 model. In other outflow regions strongly influenced by biomass burning smoke or dust, both MODIS retrievals and CAM5 simulations show no statistically significant trends; the MODIS-observed interannual variability is usually larger than that of the CAM5 simulation.

9.
J Geophys Res Atmos ; 124(14): 7975-7996, 2019 Jul 27.
Artigo em Inglês | MEDLINE | ID: mdl-32637291

RESUMO

Deposition of mineral dust into ocean fertilizes ecosystems and influences biogeochemical cycles and climate. In-situ observations of dust deposition are scarce, and model simulations depend on the highly parameterized representations of dust processes with few constraints. By taking advantage of satellites' routine sampling on global and decadal scales, we estimate African dust deposition flux and loss frequency (LF, a ratio of deposition flux to mass loading) along the trans-Atlantic transit using the three-dimensional distributions of aerosol retrieved by spaceborne lidar (CALIOP) and radiometers (MODIS, MISR, and IASI). On the basis of a ten-year (2007-2016) and basin scale average, the amount of dust deposition into the tropical Atlantic Ocean is estimated at 136 - 222 Tg yr-1. The 65-83% of satellite-based estimates agree with the in-situ climatology within a factor of 2. The magnitudes of dust deposition are highest in boreal summer and lowest in fall, whereas the interannual variability as measured by the normalized standard deviation with mean is largest in spring (28-41%) and smallest (7-15%) in summer. The dust deposition displays high spatial heterogeneity, revealing that the meridional shifts of major dust deposition belts are modulated by the seasonal migration of the intertropical convergence zone (ITCZ). On the basis of the annual and basin mean, the dust LF derived from the satellite observations ranges from 0.078 to 0.100 d-1, which is lower than model simulations by up to factors of 2 to 5. The most efficient loss of dust occurs in winter, consistent with the higher possibility of low-altitude transported dust in southern trajectories being intercepted by rainfall associated with the ITCZ. The satellite-based estimates of dust deposition can be used to fill the geographical gaps and extend time span of in-situ measurements, study the dust-ocean interactions, and evaluate model simulations of dust processes.

10.
Science ; 337(6094): 566-9, 2012 Aug 03.
Artigo em Inglês | MEDLINE | ID: mdl-22859485

RESUMO

Many types of aerosols have lifetimes long enough for their transcontinental transport, making them potentially important contributors to air quality and climate change in remote locations. We estimate that the mass of aerosols arriving at North American shores from overseas is comparable with the total mass of particulates emitted domestically. Curbing domestic emissions of particulates and precursor gases, therefore, is not sufficient to mitigate aerosol impacts in North America. The imported contribution is dominated by dust leaving Asia, not by combustion-generated particles. Thus, even a reduction of industrial emissions of the emerging economies of Asia could be overwhelmed by an increase of dust emissions due to changes in meteorological conditions and potential desertification.


Assuntos
Aerossóis/química , Poluentes Atmosféricos/química , Atmosfera/química , Poeira , Resíduos Industriais , América do Norte
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA