Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Int J Mol Sci ; 25(3)2024 Jan 30.
Artigo em Inglês | MEDLINE | ID: mdl-38338987

RESUMO

Hepcidin is upregulated by increased body iron stores and inflammatory cytokines. It is associated with cardiovascular events, arterial stiffness, and increased iron accumulation in human atheroma with hemorrhage. However, it is unknown whether the expression of hepcidin in human carotid plaques is related to plaque severity and whether hepcidin expression differs between men and women. Carotid samples from 58 patients (38 males and 20 females) were immunostained with hepcidin, macrophages, ferritin, and transferrin receptor. Immunocytochemistry of hepcidin was performed on THP-1 macrophages exposed to iron or 7betahydroxycholesterol. Hepcidin expression significantly increases with the progression of human atherosclerotic plaques. Plaques of male patients have significantly higher levels of hepcidin. Expressions of hepcidin are significantly correlated with the accumulation of CD68-positive macrophages and transferrin receptor 1 (TfR1) and apoptosis. In vitro, hepcidin is significantly increased in macrophages exposed to iron and moderately increased following 7-oxysterol treatment. In the cultured cells, suppression of hepcidin protected against macrophage cell death, lysosomal membrane permeabilization, and oxidative stress. Hepcidin may play a crucial role in the development and progression of atherosclerosis. The differential expression of hepcidin in male and female patients and its significant correlations with plaque severity, highlight the potential of hepcidin as a biomarker for risk stratification and therapeutic targeting in atherosclerosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Feminino , Humanos , Masculino , Aterosclerose/metabolismo , Hepcidinas/genética , Hepcidinas/metabolismo , Ferro/metabolismo , Placa Aterosclerótica/genética , Placa Aterosclerótica/metabolismo , Receptores da Transferrina/genética , Caracteres Sexuais
2.
Int J Mol Sci ; 23(12)2022 Jun 07.
Artigo em Inglês | MEDLINE | ID: mdl-35742805

RESUMO

(1) Background: Protease-activated receptor 1 (PAR1) has regulatory functions in inflammation, atherogenesis, and atherothrombosis. Chronic iron administration accelerates arterial thrombosis. Intraplaque hemorrhage and hemoglobin catabolism by macrophages are associated with dysregulated iron metabolism and atherosclerotic lesion instability. However, it remains unknown whether expressions of PAR1 in human atherosclerotic lesions are related to plaque severity, accumulation of macrophages, and iron-related proteins. We investigated the expression of PAR1 and its relation to the expression of ferritin and transferrin receptors in human carotid atherosclerotic plaques and then explored potential connections between their expressions, plaque development, and classical risk factors. (2) Methods: Carotid samples from 39 patients (25 males and 14 females) were immunostained with PAR1, macrophages, ferritin, and transferrin receptor. Double immunocytochemistry of PAR1 and ferritin was performed on THP-1 macrophages exposed to iron. (3) Results: PAR1 expression significantly increases with the patient's age and the progression of human atherosclerotic plaques. Expressions of PAR1 are significantly correlated with the accumulation of CD68-positive macrophages, ferritin, and transferrin receptor 1 (TfR1), and inversely correlated with levels of high-density lipoprotein. In vitro, PAR1 is significantly increased in macrophages exposed to iron, and the expression of PAR1 is colocalized with ferritin expression. (4) Conclusions: PAR1 is significantly related to the progression of human atherosclerotic lesions and the patient's age. PAR1 is also associated with macrophage infiltration and accumulation of iron metabolic proteins in human atherosclerotic lesions. Cellular iron-mediated induction of PAR1 and its colocalization with ferritin in macrophages may further indicate an important role of cellular iron in atherothrombosis.


Assuntos
Aterosclerose , Placa Aterosclerótica , Aterosclerose/metabolismo , Feminino , Ferritinas/metabolismo , Humanos , Ferro/metabolismo , Masculino , Placa Aterosclerótica/patologia , Receptor PAR-1/metabolismo , Receptores da Transferrina/metabolismo
3.
Eur Heart J ; 41(9): 995-1005, 2020 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-31529020

RESUMO

AIMS: Nuclear receptors and their cofactors regulate key pathophysiological processes in atherosclerosis development. The transcriptional activity of these nuclear receptors is controlled by the nuclear receptor corepressors (NCOR), scaffolding proteins that form the basis of large corepressor complexes. Studies with primary macrophages demonstrated that the deletion of Ncor1 increases the expression of atherosclerotic molecules. However, the role of nuclear receptor corepressors in atherogenesis is unknown. METHODS AND RESULTS: We generated myeloid cell-specific Ncor1 knockout mice and crossbred them with low-density lipoprotein receptor (Ldlr) knockouts to study the role of macrophage NCOR1 in atherosclerosis. We demonstrate that myeloid cell-specific deletion of nuclear receptor corepressor 1 (NCOR1) aggravates atherosclerosis development in mice. Macrophage Ncor1-deficiency leads to increased foam cell formation, enhanced expression of pro-inflammatory cytokines, and atherosclerotic lesions characterized by larger necrotic cores and thinner fibrous caps. The immunometabolic effects of NCOR1 are mediated via suppression of peroxisome proliferator-activated receptor gamma (PPARγ) target genes in mouse and human macrophages, which lead to an enhanced expression of the CD36 scavenger receptor and subsequent increase in oxidized low-density lipoprotein uptake in the absence of NCOR1. Interestingly, in human atherosclerotic plaques, the expression of NCOR1 is reduced whereas the PPARγ signature is increased, and this signature is more pronounced in ruptured compared with non-ruptured carotid plaques. CONCLUSIONS: Our findings show that macrophage NCOR1 blocks the pro-atherogenic functions of PPARγ in atherosclerosis and suggest that stabilizing the NCOR1-PPARγ binding could be a promising strategy to block the pro-atherogenic functions of plaque macrophages and lesion progression in atherosclerotic patients.


Assuntos
Aterosclerose , Macrófagos , Correpressor 1 de Receptor Nuclear , PPAR gama , Animais , Aterosclerose/genética , Aterosclerose/prevenção & controle , Células Espumosas , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Correpressor 1 de Receptor Nuclear/genética , PPAR gama/genética , Receptores de LDL
4.
Stroke ; 49(2): 419-425, 2018 02.
Artigo em Inglês | MEDLINE | ID: mdl-29284736

RESUMO

BACKGROUND AND PURPOSE: Men differ from women in the manifestation of atherosclerosis and iron metabolism. Intraplaque hemorrhage and hemoglobin (Hb) catabolism by macrophages are associated with atherosclerotic lesion instability. The study aims were to investigate sex differences in (1) lesion severity in relation to blood Hb, (2) iron homeostasis in human carotid plaques, and (3) macrophage polarization within atheroma. METHODS: The carotid artery samples from 39 men and 23 women were immunostained with cell markers for macrophages, smooth muscle cells, ferritin, and TfR1 (transferrin receptor 1), which were further analyzed according to sex in relation to iron, Hb, and lipids in circulation. Additionally, samples of predefined regions from human carotid atherosclerotic lesions, including internal controls, were used for proteomic analysis by mass spectrometry. RESULTS: Male patients, compared with women, had larger necrotic cores and more plaque rupture, which were associated with higher levels of Hb. Atheroma of male patients had significantly higher levels of Hb in circulation and CD68 macrophages, ferritin, and TfR1 in lesions. CD68 macrophages were significantly correlated with ferritin and TfR1. Plaques from male patients comparatively possessed higher levels of inflammatory macrophage subsets, CD86 (M1) and CD163 (M2), but lower levels of STF (serotransferrin) and HPX (hemopexin). CONCLUSIONS: Male patients with carotid atheroma had more advanced and ruptured lesions associated with significantly higher levels of inflammatory macrophage infiltration and high iron stores in the blood and in their plaques. These findings help to understand sex differences and iron metabolism in atherosclerosis and factors related to atheroma progression.


Assuntos
Aterosclerose/metabolismo , Inflamação/metabolismo , Ferro/metabolismo , Macrófagos/metabolismo , Idoso , Idoso de 80 Anos ou mais , Biomarcadores/metabolismo , Doenças das Artérias Carótidas/metabolismo , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Proteômica
5.
J Cell Mol Med ; 20(9): 1664-72, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-27079462

RESUMO

Autophagy dysfunction in mouse atherosclerosis models has been associated with increased lipid accumulation, apoptosis and inflammation. Expression of cystatin C (CysC) is decreased in human atheroma, and CysC deficiency enhances atherosclerosis in mice. Here, we first investigated the association of autophagy and CysC expression levels with atheroma plaque severity in human atherosclerotic lesions. We found that autophagy proteins Atg5 and LC3ß in advanced human carotid atherosclerotic lesions are decreased, while markers of dysfunctional autophagy p62/SQSTM1 and ubiquitin are increased together with elevated levels of lipid accumulation and apoptosis. The expressions of LC3ß and Atg5 were positively associated with CysC expression. Second, we investigated whether CysC expression is involved in autophagy in atherosclerotic apoE-deficient mice, demonstrating that CysC deficiency (CysC(-/-) ) in these mice results in reduction of Atg5 and LC3ß levels and induction of apoptosis. Third, macrophages isolated from CysC(-/-) mice displayed increased levels of p62/SQSTM1 and higher sensitivity to 7-oxysterol-mediated lysosomal membrane destabilization and apoptosis. Finally, CysC treatment minimized oxysterol-mediated cellular lipid accumulation. We conclude that autophagy dysfunction is a characteristic of advanced human atherosclerotic lesions and is associated with reduced levels of CysC. The deficiency of CysC causes autophagy dysfunction and apoptosis in macrophages and apoE-deficient mice. The results indicate that CysC plays an important regulatory role in combating cell death via the autophagic pathway in atherosclerosis.


Assuntos
Aterosclerose/metabolismo , Aterosclerose/patologia , Autofagia , Cistatina C/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Idoso , Animais , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Linhagem Celular , Cistatina C/deficiência , Progressão da Doença , Humanos , Espaço Intracelular/efeitos dos fármacos , Espaço Intracelular/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Lisossomos/efeitos dos fármacos , Lisossomos/metabolismo , Macrófagos/efeitos dos fármacos , Camundongos , Permeabilidade , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , Proteínas Recombinantes/farmacologia
6.
Eur J Immunol ; 44(10): 3081-92, 2014 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-25042478

RESUMO

Atherosclerosis is an inflammatory disease associated with the activation of innate immune TLRs and nucleotide-binding oligomerization domain-containing protein (NOD)-like receptor pathways. However, the function of most innate immune receptors in atherosclerosis remains unclear. Here, we show that NOD2 is a crucial innate immune receptor influencing vascular inflammation and atherosclerosis severity. 10-week stimulation with muramyl dipeptide (MDP), the NOD2 cognate ligand, aggravated atherosclerosis, as indicated by the augmented lesion burden, increased vascular inflammation and enlarged lipid-rich necrotic cores in Ldlr(-/-) mice. Myeloid-specific ablation of NOD2, but not its downstream kinase, receptor-interacting serine/threonine-protein kinase 2, restrained the expansion of the lipid-rich necrotic core in Ldlr(-/-) chimeric mice. In vitro stimulation of macrophages with MDP enhanced the uptake of oxidized low-density lipoprotein and impaired cholesterol efflux in concordance with upregulation of scavenger receptor A1/2 and downregulation of ATP-binding cassette transporter A1. Ex vivo stimulation of human carotid plaques with MDP led to increased activation of inflammatory signaling pathways p38 MAPK and NF-κB-mediated release of proinflammatory cytokines. Altogether, this study suggests that NOD2 contributes to the expansion of the lipid-rich necrotic core and promotes vascular inflammation in atherosclerosis.


Assuntos
Aterosclerose/imunologia , Aterosclerose/patologia , Imunidade Inata , Inflamação/imunologia , Proteína Adaptadora de Sinalização NOD2/imunologia , Placa Aterosclerótica/imunologia , Animais , Aterosclerose/metabolismo , Western Blotting , Modelos Animais de Doenças , Humanos , Hipercolesterolemia/imunologia , Hipercolesterolemia/metabolismo , Hipercolesterolemia/patologia , Imunidade Inata/imunologia , Imuno-Histoquímica , Marcação In Situ das Extremidades Cortadas , Inflamação/metabolismo , Inflamação/patologia , Camundongos , Camundongos Knockout , Necrose , Proteína Adaptadora de Sinalização NOD2/metabolismo , Placa Aterosclerótica/metabolismo , Placa Aterosclerótica/patologia , RNA Mensageiro/análise , Reação em Cadeia da Polimerase em Tempo Real
7.
Biochem Biophys Res Commun ; 441(4): 737-42, 2013 Nov 29.
Artigo em Inglês | MEDLINE | ID: mdl-24184477

RESUMO

Potentially, cellular iron regulates functional plasticity in macrophages yet; interaction of functionally polarized macrophages with iron-oxide nanoparticles has never been studied. We found that monocyte differentiation alters cellular ferritin and cathepsin L levels and induces functional polarization in macrophages. Iron in super paramagnetic iron-oxide nanoparticle (SPION) induces a phenotypic shift in THP1 derived M2 macrophages towards a high CD86+ and high TNF α+ macrophage subtype. This phenotypic shift was accompanied by up-regulated intracellular levels of ferritin and cathepsin L in M2 macrophages, which is a characteristic hallmark of M1 macrophages. Atherogenic oxysterols reduce phagocytic activity in macrophage subtypes, and thus these cells may escape detection by iron-oxide nanoparticles (INPs) in-vivo.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Polaridade Celular/efeitos dos fármacos , Dextranos/farmacologia , Macrófagos/efeitos dos fármacos , Antígeno B7-2/análise , Catepsina L/metabolismo , Células Cultivadas , Compostos Férricos/farmacologia , Ferritinas/metabolismo , Humanos , Imunoglobulina G/imunologia , Inflamação/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Nanopartículas de Magnetita , Fagocitose/efeitos dos fármacos , Placa Aterosclerótica/metabolismo , Esteróis/farmacologia , Acetato de Tetradecanoilforbol/análogos & derivados , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/análise , Regulação para Cima
8.
Cells ; 12(24)2023 12 05.
Artigo em Inglês | MEDLINE | ID: mdl-38132092

RESUMO

Imidacloprid (IMI), a neonicotinoid insecticide, has potential cytotoxic and genotoxic effects on human and experimental models, respectively. While being an emerging environmental contaminant, occupational exposure and related cellular mechanisms are unknown. Herein, we were motivated by a specific patient case where occupational exposure to an IMI-containing plant protection product was associated with the diagnosis of Bell's palsy. The aim was to investigate the toxic effects and cellular mechanisms of IMI exposure on glial cells (D384 human astrocytes) and on human fibroblasts (AG01518). IMI-treated astrocytes showed a reduction in cell number and dose-dependent cytotoxicity at 24 h. Lower doses of IMI induced reactive oxygen species (ROS) and lysosomal membrane permeabilisation (LMP), causing apoptosis and autophagic dysfunction, while high doses caused significant necrotic cell death. Using normal fibroblasts, we found that IMI-induced autophagic dysfunction and lysosomal damage, activated lysophagy, and resulted in a compensatory increase in lysosomes. In conclusion, the observed IMI-induced effects on human glial cells and fibroblasts provide a possible link between IMI cytotoxicity and neurological complications observed clinically in the patient exposed to this neonicotinoid insecticide.


Assuntos
Inseticidas , Humanos , Inseticidas/toxicidade , Astrócitos , Estresse Oxidativo , Neonicotinoides/toxicidade , Neonicotinoides/metabolismo , Apoptose , Lisossomos/metabolismo , Fibroblastos
9.
Metabolites ; 12(1)2022 Jan 10.
Artigo em Inglês | MEDLINE | ID: mdl-35050177

RESUMO

The aim of this study was to investigate whether CD74 levels in atherosclerotic lesions are associated with inflammation, apoptosis, plaque severity, and clinical symptoms among patients with carotid atherosclerosis. We further studied whether CD74 expression is associated with apoptosis in macrophages induced by 7ketocholesterol (7keto). Sixty-one carotid samples (39 males and 22 females) were immunostained with macrophages, smooth muscle cells, CD74, ferritin, TUNEL (Terminal deoxynucleotidyl transferase dUTP nick end labeling), and thrombin receptors. Double immunocytochemistry of CD74 and caspase 3 or CD74 and Annexin V was performed on THP-1 macrophages exposed to 7keto. In human carotid plaques, CD74 expression is lesion-dependently increased and is associated with necrotic core formation and plaque rupture, clinical symptoms, macrophage apoptosis, ferritin, and thrombin receptors. CD74 levels were inversely correlated to high-density lipoproteins and statin treatment, and positively correlated to triglycerides. In THP-1 macrophages, 7keto induced a significant increase in levels of CD74, ferritin, and apoptotic cell death. This study suggests that CD74 in apoptotic macrophages is linked to inflammation and thrombosis in progression of human atherosclerotic plaques, lipid metabolism, and clinical manifestation in atherosclerosis. Surface CD74 in apoptotic macrophages and ferritin production induced by oxidized lipids may contribute to inflammation and plaque vulnerability in atherosclerosis.

10.
Matrix Biol ; 114: 108-137, 2022 12.
Artigo em Inglês | MEDLINE | ID: mdl-35618217

RESUMO

Extracellular matrices (ECMs) in the intervertebral disc (IVD), lung and artery are thought to undergo age-dependant accumulation of damage by chronic exposure to mechanisms such as reactive oxygen species, proteases and glycation. It is unknown whether this damage accumulation is species-dependant (via differing lifespans and hence cumulative exposures) or whether it can influence the progression of age-related diseases such as atherosclerosis. Peptide location fingerprinting (PLF) is a new proteomic analysis method, capable of the non-targeted identification of structure-associated changes within proteins. Here we applied PLF to publicly available ageing human IVD (outer annulus fibrosus), ageing mouse lung and human arterial atherosclerosis datasets and bioinformatically identified novel target proteins alongside common age-associated differences within protein structures which were conserved between three ECM-rich organs, two species, three IVD tissue regions, sexes and in an age-related disease. We identify peptide yield differences across protein structures which coincide with biological regions, potentially reflecting the functional consequences of ageing or atherosclerosis for macromolecular assemblies (collagen VI), enzyme/inhibitor activity (alpha-2 macroglobulin), activation states (complement C3) and interaction states (laminins, perlecan, fibronectin, filamin-A, collagen XIV and apolipoprotein-B). Furthermore, we show that alpha-2 macroglobulin and collagen XIV exhibit possible shared structural consequences in IVD ageing and arterial atherosclerosis, providing novel links between an age-related disease and intrinsic ageing. Crucially, we also demonstrate that fibronectin, laminin beta chains and filamin-A all exhibit conserved age-associated structural differences between mouse lung and human IVD, providing evidence that ECM, and their associating proteins, may be subjected to potentially similar mechanisms or consequences of ageing across both species, irrespective of differences in lifespan and tissue function.


Assuntos
Aterosclerose , Degeneração do Disco Intervertebral , Disco Intervertebral , Camundongos , Animais , Humanos , Fibronectinas/metabolismo , Filaminas/análise , Filaminas/metabolismo , Proteômica/métodos , Disco Intervertebral/metabolismo , Degeneração do Disco Intervertebral/metabolismo , Colágeno/metabolismo , Envelhecimento/metabolismo , Laminina/metabolismo , Peptídeos/metabolismo , Aterosclerose/genética , Aterosclerose/metabolismo , Macroglobulinas/análise , Macroglobulinas/metabolismo
11.
Biochem Biophys Res Commun ; 409(4): 711-6, 2011 Jun 17.
Artigo em Inglês | MEDLINE | ID: mdl-21621514

RESUMO

Endothelial dysfunction and cell death play an important role in pathogenesis of atherosclerosis. 7-Oxysterols, the major cytotoxic component found in oxidized low-density lipoprotein, are toxic to endothelial cells. However, the pathways and molecular mechanism involved in the process remain incompletely understood. In this study, we first investigate whether 7ß-hydroxycholesterol (7ßOH) or 7-ketocholesterol (7keto) induces apoptosis of human endothelial cell line (HUVEC-CS). We then examine possible involved pathways by focusing on cellular lipid, lysosomal pathways, cellular oxidative stress and mitochondrial pathways. Our results for the first time showed that 7-oxysterols induced apoptotic cell death of HUVEC-CS after 24h, which was preceded by early lipid accumulation (6h) and lysosomal membrane permeabilization (6-12h). Afterward, levels of reactive oxygen species, mitochondrial membrane permeabilization, and lysosomal cathepsin were increased assayed by immuno-cytochemistry and blotting. Notably, the exposure to 7ßOH or 7keto induced expressions and secretion of isoforms of von Willebrand factor (VWF). We conclude that apoptosis of HUVEC-CS induced by 7ßOH or 7keto mediates by early lysosomal lipid accumulation and oxidative lysosomal pathways, which results in induction and release of VWF. The results suggest the cell death induced by 7-oxysterols may contribute to endothelial dysfunction and atherothrombosis.


Assuntos
Apoptose , Endotélio Vascular/efeitos dos fármacos , Hidroxicolesteróis/toxicidade , Cetocolesteróis/toxicidade , Metabolismo dos Lipídeos , Lisossomos/metabolismo , Células Cultivadas , Citocromos c/metabolismo , Endotélio Vascular/metabolismo , Humanos , Lipoproteínas LDL/metabolismo
12.
J Cardiovasc Pharmacol ; 56(3): 263-7, 2010 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-20571430

RESUMO

Dimethyl sulfoxide (DMSO) is a widely used vehicle for water-insoluble substances and exerts a wide range of pharmacologic effects including anti-inflammatory and free radical scavenging properties. Additionally, in an animal model, DMSO inhibited cholesterol-induced atherosclerosis. Despite such profound pharmacologic effects, mechanisms at the cellular level are not well understood. Atherogenic oxysterols, especially 7-oxysterols, are potent inducers of oxidative stress, cell apoptosis, and are elevated in human atherosclerotic lesions. In this study, we first investigated the effect of DMSO on 7beta-hydroxycholesterol-induced apoptosis of U937 cells and then focused on its influences on production of reactive oxygen species, lysosomal, and mitochondrial membrane permeability. Our results revealed that DMSO protected U937 cells against 7beta-hydroxycholesterol-induced cell death by preventing lysosomal and mitochondrial membrane permeabilization and reactive oxygen species production. Our results also emphasize the necessity for appropriate solvent control groups in experimental models in which DMSO has been used to examine drug effect or identify pathways.


Assuntos
Apoptose/efeitos dos fármacos , Dimetil Sulfóxido/farmacologia , Sequestradores de Radicais Livres/farmacologia , Hidroxicolesteróis/toxicidade , Lisossomos/efeitos dos fármacos , Mitocôndrias/efeitos dos fármacos , Permeabilidade da Membrana Celular/efeitos dos fármacos , Humanos , Lisossomos/metabolismo , Mitocôndrias/metabolismo , Membranas Mitocondriais/metabolismo , Estresse Oxidativo/efeitos dos fármacos , Espécies Reativas de Oxigênio/metabolismo , Células U937
13.
Curr Med Chem ; 15(21): 2157-72, 2008.
Artigo em Inglês | MEDLINE | ID: mdl-18781942

RESUMO

Atherosclerosis being a leading death cause in many countries is a chronic inflammatory process in which inflammation, immune activation, and oxidative stress are interactively involved. Some epidemiological and many experimental studies suggest that development of atherosclerosis is associated with the amount of iron stored in the body. Transport of electrons between different forms of iron makes it essential for many fundamental cell functions and signaling. Under pathologic conditions iron may serves as a potential catalyst, particularly in the form of redox-active iron or labile iron, for free radical reactions in oxidative stress and cell damage of atherogenesis. Emerging evidence indicates that cellular iron may participate in various cellular signaling pathways, many of which have been implicated in atherogenesis. These include iron homeostatic control signaling, iron-induced oxidative-responsive transcription factors, iron-induced activation of inflammatory cytokines, and iron-dependent signaling in cell growth and apoptosis. This review highlights research progress on atherosclerosis-relevant iron signaling and revisits our hypothesis on iron and atherosclerosis. We propose that iron may contribute to the pathogenesis of atherosclerosis not only via changes in the body iron amount but also by its regulatory roles in redox-sensitive signaling and inflammatory immune responses of atherosclerosis.


Assuntos
Aterosclerose/imunologia , Aterosclerose/metabolismo , Ferro/metabolismo , Transdução de Sinais , Animais , Apoptose/imunologia , Coenzimas/metabolismo , Cobre/metabolismo , Radicais Livres/metabolismo , Regulação da Expressão Gênica/imunologia , Humanos , Proteínas Reguladoras de Ferro/metabolismo , Oxirredução , Enxofre/metabolismo , Fatores de Transcrição/metabolismo
14.
Exp Biol Med (Maywood) ; 233(7): 818-26, 2008 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-18445768

RESUMO

Accumulation of tissue iron has been implicated in development of atherosclerotic lesions mainly because of increased iron-catalyzed oxidative injury. However, it remains unknown whether cellular iron import and storage in human atheroma are related to human atheroma development. We found that transferrin receptor 1 (TfR1), a major iron importer, is highly expressed in foamy macrophages and some smooth muscle cells in intimal lesions of human carotid atheroma, mainly in cytoplasmic accumulation patterns. In 52 human carotid atherosclerotic lesions, TfR1 expression was positively correlated with macrophage infiltration, ectopic lysosomal cathepsin L, and ferritin expression. Highly expressed TfR1 and ferritin in CD68-positive macrophages were significantly associated with development and severity of human carotid plaques, smoking, and patient's symptoms. The findings suggest that pathologic macrophage iron metabolism may contribute to vulnerability of human atheroma, established risk factors, and their clinical symptoms. The cytoplasmic overexpression of TfR1 may be the result of lysosomal dysfunction and ectopic accumulation of lysosomal cathepsin L caused by atheroma-relevant lipids in atherogenesis.


Assuntos
Aterosclerose/metabolismo , Estenose das Carótidas/metabolismo , Ferritinas/metabolismo , Receptores da Transferrina/metabolismo , Idoso , Idoso de 80 Anos ou mais , Antígenos CD/metabolismo , Antígenos de Diferenciação Mielomonocítica/metabolismo , Aterosclerose/patologia , Estenose das Carótidas/patologia , Catepsina L , Catepsinas/metabolismo , Cisteína Endopeptidases/metabolismo , Feminino , Ferritinas/genética , Regulação da Expressão Gênica , Humanos , Ferro/metabolismo , Lisossomos/metabolismo , Macrófagos/metabolismo , Macrófagos/patologia , Masculino , Pessoa de Meia-Idade , Músculo Liso Vascular/metabolismo , Músculo Liso Vascular/patologia , Receptores da Transferrina/genética , Índice de Gravidade de Doença
15.
Biol Sex Differ ; 9(1): 54, 2018 12 29.
Artigo em Inglês | MEDLINE | ID: mdl-30594242

RESUMO

BACKGROUND: Atherosclerotic lesions are comprised of distinct regions with different proteomic profiles. Men and women develop differences in lesion phenotype, with lesions from women generally being more stable and less prone to rupture. We aimed to investigate the differences in proteomic profiles between sexes, including distinct lesion regions, to identify altered proteins that contribute to these differences observed clinically. METHODS: Carotid endarterectomy samples (ten men/ten women) were obtained, and intraplaque biopsies from three distinct regions (internal control, fatty streak and plaque) were analysed by tandem-mass spectrometry. Multivariate statistical modelling, using orthogonal partial least square-discriminant analysis, was used to discriminate the proteomes between men and women. RESULTS: Multivariate discriminant modelling revealed proteins from 16 functional groups that displayed sex-specific associations. Additional statistics revealed ten proteins that display region-specific alterations when comparing sexes, including proteins related to inflammatory response, response to reactive oxygen species, complement activation, transport and blood coagulation. Transport protein afamin and blood coagulation proteins antithrombin-III and coagulation factor XII were significantly increased in plaque region from women. Inflammatory response proteins lysozyme C and phospholipase A2 membrane-associated were significantly increased in plaque region from men. Limitations with this study are the small sample size, limited patient information and lack of complementary histology to control for cell type differences between sexes. CONCLUSIONS: This pilot study, for the first time, utilises a multivariate proteomic approach to investigate sexual dimorphism in human atherosclerotic tissue, and provides an essential proteomic platform for further investigations to help understand sexual dimorphism and plaque vulnerability in atherosclerosis.


Assuntos
Doenças das Artérias Carótidas/patologia , Modelos Biológicos , Placa Aterosclerótica/patologia , Proteômica , Idoso , Feminino , Regulação da Expressão Gênica , Humanos , Masculino , Análise Multivariada , Pilotos , Fatores Sexuais
16.
APMIS ; 115(7): 848-56, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17614852

RESUMO

P120-catenin plays an important role in cell adhesion and signalling transduction though the function of its isoforms is unclear. The aim of this study was to examine the expression of p120-catenin isoforms in lung cancer and investigate their relationship to clinicopathological factors in lung squamous cell carcinomas (SCCs) and adenocarcinomas. The expression patterns of p120-catenin in lung cancer tissues and lung cancer cells were examined by p120-catenin immunofluorescence, Western blot, and reverse transcription-polymerase chain reaction (RT-PCR). Clear and continuous red fluorescence of p120-catenin is displayed at the cell membrane of corresponding normal bronchial epithelial cells, but not in lung cancer tissues that show reduction or absence of membrane expression of p120-catenin or cytoplasmic accumulation of p120-catenin. Compared with corresponding normal lung tissues, lung cancer tissues have significantly lower levels of p120-catenin proteins (P<0.001) and mRNA (P<0.001). The isoforms 1 (120 kD) and 3 (100 kD) proteins were major isoforms of p120-catenin expressed in normal lung tissues, which were significantly reduced in lung cancer samples (P=0.001 and P<0.001, respectively). The mRNA of p120-catenin isoforms 1.2, 1.3, 2.3, 3.1 and 3.3 was detected in corresponding normal lung tissues, but was significantly absent in lung cancer samples (P<0.001 and P=0.001, respectively). Furthermore, p120-catenin isoform 1 is negatively associated--whereas p120-catenin isoform 3 is positively associated--with lymph node metastasis. We conclude that reductions of isoforms 1 and 3 may play different roles in metastatic progression of human lung cancer.


Assuntos
Adenocarcinoma/secundário , Carcinoma de Células Escamosas/secundário , Moléculas de Adesão Celular/deficiência , Neoplasias Pulmonares/patologia , Fosfoproteínas/deficiência , Adenocarcinoma/metabolismo , Adulto , Idoso , Carcinoma de Células Escamosas/metabolismo , Cateninas , Moléculas de Adesão Celular/análise , Moléculas de Adesão Celular/genética , Progressão da Doença , Regulação para Baixo , Feminino , Humanos , Neoplasias Pulmonares/metabolismo , Metástase Linfática , Masculino , Pessoa de Meia-Idade , Fosfoproteínas/análise , Fosfoproteínas/genética , Isoformas de Proteínas/análise , Isoformas de Proteínas/deficiência , Isoformas de Proteínas/genética , RNA Mensageiro/análise , RNA Mensageiro/metabolismo , delta Catenina
17.
FASEB J ; 20(13): 2281-90, 2006 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-17077305

RESUMO

OBJECTIVE: Earlier we suggested that atheroma lesions constitute a "death zone" containing toxic materials that may cause dysfunction and demise of invading macrophages to prevent the removal of plaque materials. Here we have assessed the cytotoxic effects of nonfractionated gruel and insoluble (ceroid-like) material derived from advanced human atheroma. METHODS AND RESULTS: The insoluble material within advanced atherosclerotic plaque was isolated following protease K digestion and extensive extraction with aqueous and organic solvents. FTIR, Raman, and atomic absorption spectroscopy suggested that, despite its fluorescent nature, this material closely resembled hydroxyapatite and dentin, but also contained a significant amount of iron and calcium. When added to J774 cells and human macrophages in culture, this insoluble substance was phagocytosed, and progressive cell death followed. However, an even more cytotoxic activity was found in the atheromatous "gruel" that contains abundant carbonyls/aldehydes. Cell death caused by both crude gruel and ceroid could be blocked by preincubating cells with the lipophilic iron chelator salicylaldehyde isonicotinoyl hydrazone, apoferritin, BAPTA/AM, or sodium borohydride, indicating that cellular iron, calcium, and reactive aldehyde(s) are responsible for the observed cytotoxicity. CONCLUSIONS: Toxic materials within atheromatous lesions include both ceroid and even more cytotoxic lipidaceous materials. The cytotoxic effects of these plaque components may help explain the persistence of atherosclerotic lesions.


Assuntos
Aorta Abdominal/patologia , Aterosclerose/patologia , Macrófagos/patologia , Artéria Torácica Interna/patologia , Animais , Arteriopatias Oclusivas/patologia , Morte Celular , Linhagem Celular , Meios de Cultura , Humanos , Camundongos , Coelhos
18.
PLoS One ; 12(3): e0174475, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-28350877

RESUMO

The 7-oxysterols are recognised as strong enhancers of inflammatory processes in foamy macrophages. Atheroma-relevant 7-oxysterol mixtures induce a mixed type of cell death in macrophages, and trigger cellular oxidative stress responses, which mimic oxidative exposures observed in atherosclerotic lesions. However, the macrophage proteome has not previously been determined in the 7-oxysterol treated cell model. The aim of the present study was to determine the specific effects of an atheroma-relevant 7-oxysterol mixture on human macrophage proteome. Human THP-1 macrophages were exposed to an atheroma-relevant mixture of 7ß-hydroxycholesterol and 7-ketocholesterol. Two-dimensional gel electrophoresis and mass spectrometry techniques were used to analyse the alterations in macrophage proteome, which resulted in the identification of 19 proteins with significant differential expression upon oxysterol loading; 8 increased and 11 decreased. The expression patterns of 11 out of 19 identified significant proteins were further confirmed by tandem-mass spectrometry, including further validation of increased histone deacetylase 2 and macrophage scavenger receptor types I and II expressions by western blot analysis. Identified proteins with differential expression in the cell model have been associated with i) signalling imbalance in cell death and cellular longevity; ii) lipid uptake and metabolism in foam cells; and iii) inflammatory proteins. The presented findings highlight a new proteomic platform for further studies into the functional roles of macrophages in atherosclerosis, and present a cell model for future studies to modulate the macrophage proteome by potential anti-atherosclerotic agents.


Assuntos
Metabolismo dos Lipídeos/efeitos dos fármacos , Macrófagos/efeitos dos fármacos , Oxisteróis/farmacologia , Proteoma/metabolismo , Proteômica/métodos , Apoptose/efeitos dos fármacos , Autofagia/efeitos dos fármacos , Western Blotting , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , Eletroforese em Gel Bidimensional , Humanos , Hidroxicolesteróis/farmacologia , Cetocolesteróis/farmacologia , Macrófagos/metabolismo , Oxisteróis/metabolismo , Placa Aterosclerótica/metabolismo , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Espectrometria de Massas em Tandem , Fatores de Tempo
19.
Free Radic Biol Med ; 41(6): 902-10, 2006 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-16934673

RESUMO

Apoptotic cells in atheroma lesions may contribute to plaque development and instability. Oxysterols constitute the major toxic component in oxLDL and are present in mixed forms in human atheroma lesions. However, the cellular effects of oxysterols have been mostly studied individually. In the present study, we investigated the cytotoxic effects of 7beta-hydroxycholesterol (7betaOH), 7-ketocholesterol (7keto), 25-hydroxycholesterol (25OH), and 27-hydroxycholesterol (27OH) on U937 monocytic cells, both individually and in atheroma-relevant mixtures mimicking the oxysterol composition reported in human atheroma lesions. Apoptosis and necrosis were studied by examining cell morphology, phosphatidylserine exposure, caspase activation, and the terminal dUTP nick end-labeling technique. Cellular reactive oxygen species and total amount of reduced thiols were measured by using fluorescence probes and 5,5'-dithiobis-(2-nitrobenzoic acid), respectively. We found that 7betaOH and 7keto induced caspase activation, ROS production, cellular thiol depletion, permeabilization of lysosomal and mitochondrial membranes, and cell death. 25OH and 27OH did not cause any of the above alterations, whereas 7betaOH and 7keto exerted synergistic toxic effects. Although single 25OH or 27OH exhibited quenching effects on both 7betaOH- and 7keto-induced cell death, the combination of all four oxysterols in atheroma-relevant proportions was proapoptotic. Our findings indicate that the major oxysterols accumulated in human atheroma are proapoptotic and may contribute to atherosclerotic lesion development.


Assuntos
Apoptose/fisiologia , Aterosclerose/metabolismo , Aterosclerose/patologia , Esteroides/metabolismo , Apoptose/efeitos dos fármacos , Aterosclerose/fisiopatologia , Caspases/metabolismo , Morte Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Humanos , Esteroides/farmacologia , Células U937
20.
Am J Clin Pathol ; 125(4): 534-41, 2006 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-16627264

RESUMO

We studied the expression of axin and beta-catenin and their relation to clinicopathologic factors in 100 non-small cell lung cancers (NSCLCs) by immunohistochemical analysis. The mutation in exon 3 of the beta-catenin gene was examined by polymerase chain reaction and direct sequencing. Preserved axin expression was significantly higher in well- and moderately differentiated NSCLC samples than in poorly differentiated ones. Reduced membranous expression of beta-catenin was shown in 80 cases, whereas 26 cases had aberrant nuclear expression. Poor differentiation and lymph node metastasis were associated significantly with reduced beta-catenin expression. Lower axin expression was related significantly to higher nuclear beta-catenin expression. However, this study failed to detect any exon 3 mutation in the beta-catenin gene in the 100 NSCLC samples. We conclude that reduced beta-catenin and axin expression might predict poor differentiation in NSCLC. Reduced axin expression, but not mutation in exon 3, might be an important explanation for the abnormal beta-catenin expression in NSCLC.


Assuntos
Carcinoma Pulmonar de Células não Pequenas/patologia , Neoplasias Pulmonares/patologia , Proteínas Repressoras/biossíntese , beta Catenina/biossíntese , Adulto , Idoso , Proteína Axina , Carcinoma Pulmonar de Células não Pequenas/genética , Carcinoma Pulmonar de Células não Pequenas/metabolismo , Diferenciação Celular , Progressão da Doença , Eletroforese em Gel de Poliacrilamida , Feminino , Humanos , Imuno-Histoquímica , Neoplasias Pulmonares/genética , Neoplasias Pulmonares/metabolismo , Metástase Linfática/genética , Metástase Linfática/patologia , Masculino , Pessoa de Meia-Idade , Mutação , Reação em Cadeia da Polimerase
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA