Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 33
Filtrar
1.
J Med Virol ; 95(2): e28513, 2023 02.
Artigo em Inglês | MEDLINE | ID: mdl-36661039

RESUMO

Mpox is caused by the mpox virus, which belongs to the Orthopoxvirus genus and Poxviridae family. Animal hosts, such as African rodents, mice, prairie dogs, and non-human primates, play important roles in the development and transmission of outbreaks. Laboratory animal infection experiments have demonstrated that some animals are susceptible to mpox virus. This review summarizes the current progress on the animal hosts for mpox virus. The surveillance of mpox virus in animal hosts will provide important insights into virus tracing, analysis of mutation evolutionary patterns, transmission mechanisms, and development of control measures.


Assuntos
Monkeypox virus , Mpox , Animais , Camundongos , Especificidade de Hospedeiro , Primatas/virologia , Sciuridae/virologia , Mpox/veterinária
2.
Cell Biol Toxicol ; 37(6): 873-890, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-33469864

RESUMO

Cardiac endothelium communicates closely with adjacent cardiac cells by multiple cytokines and plays critical roles in regulating fibroblasts proliferation, activation, and collagen synthesis during cardiac fibrosis. E26 transformation-specific (ETS)-related gene (ERG) belongs to the ETS transcriptional factor family and is required for endothelial cells (ECs) homeostasis and cardiac development. This study aims at investigating the potential role and molecular basis of ERG in fibrotic remodeling within the adult heart. We observed that ERG was abundant in murine hearts, especially in cardiac ECs, but decreased during cardiac fibrosis. ERG knockdown within murine hearts caused spontaneously cardiac fibrosis and dysfunction, accompanied by the activation of multiple Smad-dependent and independent pathways. However, the direct silence of ERG in cardiac fibroblasts did not affect the expression of fibrotic markers. Intriguingly, ERG knockdown in human umbilical vein endothelial cells (HUVECs) promoted the secretion of endothelin-1 (ET-1), which subsequently accelerated the proliferation, phenotypic transition, and collagen synthesis of cardiac fibroblasts in a paracrine manner. Suppressing ET-1 with either a neutralizing antibody or a receptor blocker abolished ERG knockdown-mediated deleterious effect in vivo and in vitro. This pro-fibrotic effect was also negated by RGD (Arg-Gly-Asp)-peptide magnetic nanoparticles target delivery of ET-1 small interfering RNA to ECs in mice. More importantly, we proved that endothelial ERG overexpression notably prevented pressure overload-induced cardiac fibrosis. Collectively, endothelial ERG alleviates cardiac fibrosis via blocking ET-1-dependent paracrine mechanism and it functions as a candidate for treating cardiac fibrosis. • ERG is abundant in murine hearts, especially in cardiac ECs, but decreased during fibrotic remodeling. • ERG knockdown causes spontaneously cardiac fibrosis and dysfunction. • ERG silence in HUVECs promotes the secretion of endothelin-1, which in turn activates cardiac fibroblasts in a paracrine manner. • Endothelial ERG overexpression prevents pressure overload-induced cardiac fibrosis.


Assuntos
Endotelina-1 , Fibroblastos , Animais , Células Cultivadas , Endotélio , Fibroblastos/patologia , Fibrose , Células Endoteliais da Veia Umbilical Humana , Humanos , Camundongos , Camundongos Endogâmicos C57BL
3.
J Mol Cell Cardiol ; 114: 38-47, 2018 01.
Artigo em Inglês | MEDLINE | ID: mdl-29061338

RESUMO

BACKGROUND: Inflammation and myocytes apoptosis play critical roles in the development of doxorubicin (DOX)-induced cardiotoxicity. Our previous study found that C1q/tumour necrosis factor-related protein-3 (CTRP3) could inhibit cardiac inflammation and apoptosis of myocytes but its role in DOX-induced heart injury remains largely unknown. Our study aimed to investigate whether CTRP3 protected against DOX-induced heart injury and the underlying mechanism. METHODS: We overexpressed CTRP3 in the hearts using an adeno-associated virus system. The mice were subjected to a single intraperitoneal injection of DOX (15mg/kg) to induce short-term model for cardiomyopathy. The morphological examination and biochemical analysis were used to evaluate the effects of CTRP3. H9C2 cells were used to verify the protective role of CTRP3 in vitro. RESULTS: Myocardial CTRP3 protein levels were reduced in DOX-treated mice. Cardiac specific-overexpression of CTRP3 preserved heart dysfunction, and attenuated cardiac inflammation and cell loss induced by DOX in vivo and in vitro. CTRP3 could activate silent information regulator 1 (Sirt1) in vivo and in vitro. Moreover, specific inhibitor of Sirt1 and the silence of Sirt1 could abolish the protective effects of CTRP3 against DOX-induced inflammation and apoptosis. CONCLUSION: CTRP3 protected against DOX-induced heart injury via activation of Sirt1. CTRP3 has therapeutic potential for the treatment of DOX cardiotoxicity.


Assuntos
Adipocinas/metabolismo , Doxorrubicina/efeitos adversos , Coração/fisiopatologia , Inflamação/patologia , Sirtuína 1/metabolismo , Animais , Cardiotônicos/metabolismo , Morte Celular , Masculino , Camundongos Endogâmicos C57BL , Camundongos Knockout
4.
Cell Physiol Biochem ; 45(1): 26-36, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-29310116

RESUMO

BACKGROUND/AIMS: Cardiac fibrosis, characterized by an unbalanced production and degradation of extracellular matrix components, is a common pathophysiology of multiple cardiovascular diseases. Recent studies suggested that endothelial to mesenchymal transition (EndMT) could be a source of activated fibroblasts and contribute to cardiac fibrosis. Here, the role of pioglitazone (PIO) in cardiac fibrosis and EndMT was elaborated. METHODS: Male C57BL/6 mice were subjected to aortic banding (AB), which was used to construct a model of pressure overload-induced cardiac hypertrophy. PIO and GW9662 was given for 4 weeks to detect the effects of PIO on EndMT. RESULTS: Our results showed PIO treatment attenuated cardiac hypertrophy, dysfunction and fibrosis response to pressure overload. Mechanistically, PIO suppressed the TGF-ß/Smad signaling pathway activated by 4-week AB surgery. Moreover, PIO dramatically inhibited EndMT in vivo and in vitro stimulated by pressure overload or TGF-ß. A selective antagonist of PPAR-γ, GW9662, neutralized the anti-fibrotic effect and abolished the inhibitory effect of EndMT during the treatment of PIO. CONCLUSION: Our data implied that PIO exerts an alleviative effect on cardiac fibrosis via inhibition of the TGF-ß/Smad signaling pathway and EndMT by activating PPAR-γ.


Assuntos
Diferenciação Celular/efeitos dos fármacos , Miocárdio/patologia , Pressão , Tiazolidinedionas/farmacologia , Anilidas/farmacologia , Animais , Cardiomegalia/etiologia , Cardiomegalia/patologia , Cardiomegalia/prevenção & controle , Ecocardiografia , Fibrose , Hemodinâmica/efeitos dos fármacos , Células Endoteliais da Veia Umbilical Humana , Humanos , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Miocárdio/metabolismo , PPAR gama/antagonistas & inibidores , PPAR gama/metabolismo , Pioglitazona , Transdução de Sinais/efeitos dos fármacos , Proteínas Smad/metabolismo , Tiazolidinedionas/uso terapêutico , Fator de Crescimento Transformador beta/farmacologia , Vimentina/metabolismo
5.
Basic Res Cardiol ; 113(3): 19, 2018 03 21.
Artigo em Inglês | MEDLINE | ID: mdl-29564567

RESUMO

Previous studies have suggested the involvement of CD4 + T lymphocytes in cardiac remodelling. T-bet can direct Th1 lineage commitment. This study aimed to investigate the functional significance of T-bet in cardiac remodelling induced by pressure overload using T-bet global knockout rats. Increased T-bet levels were observed in rodent and human hypertrophied hearts. T-bet deficiency resulted in a less severe hypertrophic phenotype in rats. CD4 + T-lymphocyte reconstitution in T-bet-/- rats resulted in aggravated cardiac remodelling. T-cell homing molecule expression and cytokine secretion were altered in T-bet-deficient rat hearts. Administration of exogenous interferon-γ (IFN-γ) offset T-bet deficiency-mediated cardioprotection. Cardiomyocytes cultured in T-bet-/- CD4 + T-cell-conditioned media showed a reduced hypertrophic response after hypertrophic stimuli, which was abolished by an IFN-γ-neutralizing antibody. Taken together, our findings show that T-bet deficiency attenuates pressure overload-induced cardiac remodelling in rats. Specifically, targeting T-bet in T cells may be of great importance for the treatment of pathological cardiac remodelling and heart failure.


Assuntos
Cardiomegalia/metabolismo , Cardiomiopatia Dilatada/metabolismo , Miócitos Cardíacos/metabolismo , Proteínas com Domínio T/deficiência , Células Th1/metabolismo , Remodelação Ventricular , Transferência Adotiva , Animais , Cardiomegalia/imunologia , Cardiomegalia/fisiopatologia , Cardiomegalia/prevenção & controle , Cardiomiopatia Dilatada/imunologia , Cardiomiopatia Dilatada/fisiopatologia , Cardiomiopatia Dilatada/prevenção & controle , Células Cultivadas , Quimiotaxia de Leucócito , Citocinas/imunologia , Citocinas/metabolismo , Técnicas de Silenciamento de Genes , Genótipo , Humanos , Interferon gama/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Miócitos Cardíacos/imunologia , Comunicação Parácrina , Fenótipo , Ratos Sprague-Dawley , Ratos Transgênicos , Transdução de Sinais , Proteínas com Domínio T/genética , Células Th1/efeitos dos fármacos , Células Th1/imunologia , Células Th1/transplante , Remodelação Ventricular/efeitos dos fármacos , Remodelação Ventricular/genética
6.
Clin Sci (Lond) ; 132(6): 685-699, 2018 03 30.
Artigo em Inglês | MEDLINE | ID: mdl-29540538

RESUMO

T-cell infiltration and the subsequent increased intracardial chronic inflammation play crucial roles in the development of cardiac hypertrophy and heart failure (HF). A77 1726, the active metabolite of leflunomide, has been reported to have powerful anti-inflammatory and T cell-inhibiting properties. However, the effect of A77 1726 on cardiac hypertrophy remains completely unknown. Herein, we found that A77 1726 treatment attenuated pressure overload or angiotensin II (Ang II)-induced cardiac hypertrophy in vivo, as well as agonist-induced hypertrophic response of cardiomyocytes in vitro In addition, we showed that A77 1726 administration prevented induction of cardiac fibrosis by inhibiting cardiac fibroblast (CF) transformation into myofibroblast. Surprisingly, we found that the protective effect of A77 1726 was not dependent on its T lymphocyte-inhibiting property. A77 1726 suppressed the activation of protein kinase B (AKT) signaling pathway, and overexpression of constitutively active AKT completely abolished A77 1726-mediated cardioprotective effects in vivo and in vitro Pretreatment with siRNA targetting Fyn (si Fyn) blunted the protective effect elicited by A77 1726 in vitro More importantly, A77 1726 was capable of blocking pre-established cardiac hypertrophy in mice. In conclusion, A77 1726 attenuated cardiac hypertrophy and cardiac fibrosis via inhibiting FYN/AKT signaling pathway.


Assuntos
Fibroblastos/efeitos dos fármacos , Ventrículos do Coração/efeitos dos fármacos , Hipertrofia Ventricular Esquerda/prevenção & controle , Leflunomida/farmacologia , Inibidores de Proteínas Quinases/farmacologia , Função Ventricular Esquerda/efeitos dos fármacos , Remodelação Ventricular/efeitos dos fármacos , Animais , Diferenciação Celular/efeitos dos fármacos , Células Cultivadas , Modelos Animais de Doenças , Fibroblastos/enzimologia , Fibroblastos/patologia , Fibrose , Ventrículos do Coração/enzimologia , Ventrículos do Coração/patologia , Ventrículos do Coração/fisiopatologia , Hipertrofia Ventricular Esquerda/enzimologia , Hipertrofia Ventricular Esquerda/patologia , Hipertrofia Ventricular Esquerda/fisiopatologia , Masculino , Camundongos Endogâmicos C57BL , Miofibroblastos/enzimologia , Miofibroblastos/patologia , Fosforilação , Proteínas Proto-Oncogênicas c-akt/antagonistas & inibidores , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Proteínas Proto-Oncogênicas c-fyn/genética , Proteínas Proto-Oncogênicas c-fyn/metabolismo , Ratos , Transdução de Sinais/efeitos dos fármacos
7.
Diabetologia ; 60(6): 1126-1137, 2017 06.
Artigo em Inglês | MEDLINE | ID: mdl-28258411

RESUMO

AIMS/HYPOTHESIS: Oxidative stress, inflammation and cell death are closely involved in the development of diabetic cardiomyopathy (DCM). C1q/tumour necrosis factor-related protein-3 (CTRP3) has anti-inflammatory properties but its role in DCM remains largely unknown. The aims of this study were to determine whether CTRP3 could attenuate DCM and to clarify the underlying mechanisms. METHODS: Streptozotocin (STZ) was injected intraperitoneally to induce diabetes in Sprague-Dawley rats. Cardiomyocyte-specific CTRP3 overexpression was achieved using an adeno-associated virus system 12 weeks after STZ injection. RESULTS: CTRP3 expression was significantly decreased in diabetic rat hearts. Knockdown of CTRP3 in cardiomyocytes at baseline resulted in increased oxidative injury, inflammation and apoptosis in vitro. Cardiomyocyte-specific overexpression of CTRP3 decreased oxidative stress and inflammation, attenuated myocyte death and improved cardiac function in rats treated with STZ. CTRP3 significantly activated AMP-activated protein kinase α (AMPKα) and Akt (protein kinase B) in H9c2 cells. CTRP3 protected against high-glucose-induced oxidative stress, inflammation and apoptosis in vitro. AMPKα deficiency abolished the protective effects of CTRP3 in vitro and in vivo. Furthermore, we found that CTRP3 activated AMPKα via the cAMP-exchange protein directly activated by cAMP (EPAC)-mitogen-activated protein kinase kinase (MEK) pathway. CONCLUSIONS/INTERPRETATION: CTRP3 protected against DCM via activation of the AMPKα pathway. CTRP3 has therapeutic potential for the treatment of DCM.


Assuntos
Adipocinas/metabolismo , Morte Celular/fisiologia , Cardiomiopatias Diabéticas/metabolismo , Inflamação/metabolismo , Estresse Oxidativo/fisiologia , Proteínas Quinases Ativadas por AMP/genética , Proteínas Quinases Ativadas por AMP/metabolismo , Adipocinas/genética , Animais , Apoptose/genética , Apoptose/fisiologia , Morte Celular/genética , Linhagem Celular , Diabetes Mellitus Experimental/genética , Diabetes Mellitus Experimental/metabolismo , Cardiomiopatias Diabéticas/genética , Inflamação/genética , Masculino , Estresse Oxidativo/genética , Ratos , Ratos Sprague-Dawley , Espécies Reativas de Oxigênio/metabolismo
8.
J Pharmacol Sci ; 135(3): 97-104, 2017 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-29108833

RESUMO

PURPOSE: The mitogen-activated protein kinases (MAPKs) and protein kinase B (AKT) pathways have emerged as essential intracellular signaling pathways in eukaryotic cells, particularly as regulators of cardiac hypertrophy. Previous studies indicated that arctiin, an active ingredient of biennial dried ripe burdock, could exhibit potent anti-inflammatory and anti-allergic activities via down-regulating the activation of MAPKs and AKT pathways. However, little is known about its effects on cardiac hypertrophy. Therefore, the present study aimed to explore whether arctiin could attenuate cardiac hypertrophy. GENERAL METHODS: Arctiin (80 mg/kg) was administered by oral gavage once daily for 3 weeks from 1 week after surgery. Then, the mice were subjected to either chronic pressure overload generated by aortic banding (AB) or sham surgery (control group). Cardiac function was assessed by echocardiography. FINDINGS: The results indicated that arctiin attenuated cardiac hypertrophy induced by AB, and suppressed cardiac fibrosis and accumulation of collagen in vivo. Arctiin also inhibit the activation of MAPKs and AKT occurs in response to hypertrophic stimuli. Arctiin attenuated phenylephrine-induced hypertrophy of myocytes in vitro. CONCLUSIONS: In conclusion, arctiin can improve cardiac function and prevent the development of cardiac hypertrophy by blocking the MAPKs and AKT signaling pathways.


Assuntos
Cardiomegalia/tratamento farmacológico , Cardiomegalia/etiologia , Furanos/farmacologia , Furanos/uso terapêutico , Glucosídeos/farmacologia , Glucosídeos/uso terapêutico , Sistema de Sinalização das MAP Quinases/efeitos dos fármacos , Fitoterapia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Transdução de Sinais/efeitos dos fármacos , Administração Oral , Animais , Arctium/química , Cardiomegalia/patologia , Células Cultivadas , Modelos Animais de Doenças , Fibrose , Furanos/administração & dosagem , Glucosídeos/administração & dosagem , Masculino , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/patologia
9.
J Am Heart Assoc ; 13(10): e028006, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38726894

RESUMO

BACKGROUND: S100a8/9 (S100 calcium binding protein a8/9) belongs to the S100 family and has gained a lot of interest as a critical regulator of inflammatory response. Our previous study found that S100a8/9 homolog promoted aortic valve sclerosis in mice with chronic kidney disease. However, the role of S100a8/9 in pressure overload-induced cardiac hypertrophy remains unclear. The present study was to explore the role of S100a8/9 in cardiac hypertrophy. METHODS AND RESULTS: Cardiomyocyte-specific S100a9 loss or gain of function was achieved using an adeno-associated virus system, and the model of cardiac hypertrophy was established by aortic banding-induced pressure overload. The results indicate that S100a8/9 expression was increased in response to pressure overload. S100a9 deficiency alleviated pressure overload-induced hypertrophic response, whereas S100a9 overexpression accelerated cardiac hypertrophy. S100a9-overexpressed mice showed increased FGF23 (fibroblast growth factor 23) expression in the hearts after exposure to pressure overload, which activated calcineurin/NFAT (nuclear factor of activated T cells) signaling in cardiac myocytes and thus promoted hypertrophic response. A specific antibody that blocks FGFR4 (FGF receptor 4) largely abolished the prohypertrophic response of S100a9 in mice. CONCLUSIONS: In conclusion, S100a8/9 promoted the development of cardiac hypertrophy in mice. Targeting S100a8/9 may be a promising therapeutic approach to treat cardiac hypertrophy.


Assuntos
Calgranulina A , Calgranulina B , Fator de Crescimento de Fibroblastos 23 , Fatores de Transcrição NFATC , Regulação para Cima , Animais , Masculino , Camundongos , Calcineurina/metabolismo , Calgranulina A/metabolismo , Calgranulina A/genética , Calgranulina B/metabolismo , Calgranulina B/genética , Cardiomegalia/metabolismo , Cardiomegalia/patologia , Modelos Animais de Doenças , Fator de Crescimento de Fibroblastos 23/metabolismo , Hipertrofia Ventricular Esquerda/genética , Hipertrofia Ventricular Esquerda/patologia , Camundongos Endogâmicos C57BL , Miócitos Cardíacos/metabolismo , Miócitos Cardíacos/patologia , Fatores de Transcrição NFATC/metabolismo , Fatores de Transcrição NFATC/genética , Transdução de Sinais
10.
Front Cell Infect Microbiol ; 13: 1205355, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37655297

RESUMO

Ring finger protein 213 (RNF213) is a large E3 ubiquitin ligase with a molecular weight of 591 kDa that is associated with moyamoya disease, a rare cerebrovascular disease. It is located in the cytosol and perinuclear space. Missense mutations in this gene have been found to be more prevalent in patients with moyamoya disease compared with that in healthy individuals. Understanding the molecular function of RNF213 could provide insights into moyamoya disease. RNF213 contains a C3HC4-type RING finger domain with an E3 ubiquitin ligase domain and six AAA+ adenosine triphosphatase (ATPase) domains. It is the only known protein with both AAA+ ATPase and ubiquitin ligase activities. Recent studies have highlighted the role of RNF213 in fighting against microbial infections, including viruses, parasites, bacteria, and chlamydiae. This review aims to summarize the recent research progress on the mechanisms of RNF213 in pathogenic infections, which will aid researchers in understanding the antimicrobial role of RNF213.


Assuntos
Anti-Infecciosos , Doença de Moyamoya , Humanos , Ubiquitina-Proteína Ligases , Genes Reguladores , Fatores de Transcrição , Adenosina Trifosfatases
11.
Nat Commun ; 14(1): 4967, 2023 08 16.
Artigo em Inglês | MEDLINE | ID: mdl-37587150

RESUMO

Cardiac fibrosis is a common feature of chronic heart failure. Iroquois homeobox (IRX) family of transcription factors plays important roles in heart development; however, the role of IRX2 in cardiac fibrosis has not been clarified. Here we report that IRX2 expression is significantly upregulated in the fibrotic hearts. Increased IRX2 expression is mainly derived from cardiac fibroblast (CF) during the angiotensin II (Ang II)-induced fibrotic response. Using two CF-specific Irx2-knockout mouse models, we show that deletion of Irx2 in CFs protect against pathological fibrotic remodelling and improve cardiac function in male mice. In contrast, Irx2 gain of function in CFs exaggerate fibrotic remodelling. Mechanistically, we find that IRX2 directly binds to the promoter of the early growth response factor 1 (EGR1) and subsequently initiates the transcription of several fibrosis-related genes. Our study provides evidence that IRX2 regulates the EGR1 pathway upon Ang II stimulation and drives cardiac fibrosis.


Assuntos
Insuficiência Cardíaca , Proteínas de Homeodomínio , Hormônios Peptídicos , Fatores de Transcrição , Animais , Masculino , Camundongos , Angiotensina II , Fibroblastos , Coração , Camundongos Knockout
12.
Nat Commun ; 14(1): 3383, 2023 06 08.
Artigo em Inglês | MEDLINE | ID: mdl-37291168

RESUMO

The hexosamine biosynthetic pathway (HBP) produces uridine diphosphate N-acetylglucosamine (UDP-GlcNAc) to facilitate O-linked GlcNAc (O-GlcNAc) protein modifications, and subsequently enhance cell survival under lethal stresses. Transcript induced in spermiogenesis 40 (Tisp40) is an endoplasmic reticulum membrane-resident transcription factor and plays critical roles in cell homeostasis. Here, we show that Tisp40 expression, cleavage and nuclear accumulation are increased by cardiac ischemia/reperfusion (I/R) injury. Global Tisp40 deficiency exacerbates, whereas cardiomyocyte-restricted Tisp40 overexpression ameliorates I/R-induced oxidative stress, apoptosis and acute cardiac injury, and modulates cardiac remodeling and dysfunction following long-term observations in male mice. In addition, overexpression of nuclear Tisp40 is sufficient to attenuate cardiac I/R injury in vivo and in vitro. Mechanistic studies indicate that Tisp40 directly binds to a conserved unfolded protein response element (UPRE) of the glutamine-fructose-6-phosphate transaminase 1 (GFPT1) promoter, and subsequently potentiates HBP flux and O-GlcNAc protein modifications. Moreover, we find that I/R-induced upregulation, cleavage and nuclear accumulation of Tisp40 in the heart are mediated by endoplasmic reticulum stress. Our findings identify Tisp40 as a cardiomyocyte-enriched UPR-associated transcription factor, and targeting Tisp40 may develop effective approaches to mitigate cardiac I/R injury.


Assuntos
Hexosaminas , Traumatismo por Reperfusão , Animais , Masculino , Camundongos , Vias Biossintéticas , Hexosaminas/metabolismo , Isquemia/metabolismo , Miócitos Cardíacos/metabolismo , Traumatismo por Reperfusão/metabolismo , Espermatogênese , Fatores de Transcrição/metabolismo
13.
Front Immunol ; 13: 1005586, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36172361

RESUMO

Alphaviruses contain many human and animal pathogens, such as CHIKV, SINV, and VEEV. Accumulating evidence indicates that innate immunity plays an important role in response to alphaviruses infection. In parallel, alphaviruses have evolved many strategies to evade host antiviral innate immunity. In the current review, we focus on the underlying mechanisms employed by alphaviruses to evade cGAS-STING, IFN, transcriptional host shutoff, translational host shutoff, and RNAi. Dissecting the detailed antiviral immune evasion mechanisms by alphaviruses will enhance our understanding of the pathogenesis of alphaviruses and may provide more effective strategies to control alphaviruses infection.


Assuntos
Infecções por Alphavirus , Alphavirus , Animais , Antivirais , Humanos , Evasão da Resposta Imune , Nucleotidiltransferases
14.
Front Immunol ; 13: 1084230, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36618346

RESUMO

Rift Valley fever (RVF) is a zoonotic disease caused by Rift Valley fever virus (RVFV), an emerging arbovirus within the Phenuiviridae family of Bunyavirales that has potential to cause severe diseases in both humans and livestock. It increases the incidence of abortion or foetal malformation in ruminants and leads to clinical manifestations like encephalitis or haemorrhagic fever in humans. Upon virus invasion, the innate immune system from the cell or the organism is activated to produce interferon (IFN) and prevent virus proliferation. Meanwhile, RVFV initiates countermeasures to limit antiviral responses at transcriptional and protein levels. RVFV nonstructural proteins (NSs) are the key virulent factors that not only perform immune evasion but also impact the cell replication cycle and has cytopathic effects. In this review, we summarize the innate immunity host cells employ depending on IFN signal transduction pathways, as well as the immune evasion mechanisms developed by RVFV primarily with the inhibitory activity of NSs protein. Clarifying the arms race between host innate immunity and RVFV immune evasion provides new avenues for drug target screening and offers possible solutions to current and future epidemics.


Assuntos
Febre do Vale de Rift , Vírus da Febre do Vale do Rift , Animais , Humanos , Febre do Vale de Rift/prevenção & controle , Zoonoses , Interferons/metabolismo , Evasão da Resposta Imune
15.
Int J Biol Sci ; 18(2): 760-770, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35002523

RESUMO

Cancer is a destructive disease that causes high levels of morbidity and mortality. Doxorubicin (DOX) is a highly efficient antineoplastic chemotherapeutic drug, but its use places survivors at risk for cardiotoxicity. Many studies have demonstrated that multiple factors are involved in DOX-induced acute cardiotoxicity. Among them, oxidative stress and cell death predominate. In this review, we provide a comprehensive overview of the mechanisms underlying the source and effect of free radicals and dependent cell death pathways induced by DOX. Hence, we attempt to explain the cellular mechanisms of oxidative stress and cell death that elicit acute cardiotoxicity and provide new insights for researchers to discover potential therapeutic strategies to prevent or reverse doxorubicin-induced cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/efeitos adversos , Cardiotoxicidade/etiologia , Morte Celular/efeitos dos fármacos , Doxorrubicina/efeitos adversos , Estresse Oxidativo/efeitos dos fármacos , Doença Aguda , Animais , Antibióticos Antineoplásicos/uso terapêutico , Cardiotoxicidade/patologia , Doxorrubicina/uso terapêutico , Humanos , Neoplasias/tratamento farmacológico
16.
Aging Cell ; 21(3): e13556, 2022 03.
Artigo em Inglês | MEDLINE | ID: mdl-35166002

RESUMO

Aging is an important risk factor for cardiovascular diseases, and aging-related cardiac dysfunction serves as a major determinant of morbidity and mortality in elderly populations. Our previous study has identified fibronectin type III domain-containing 5 (FNDC5) and its cleaved form, irisin, as the cardioprotectant against doxorubicin-induced cardiomyopathy. Herein, aging or matched young mice were overexpressed with FNDC5 by adeno-associated virus serotype 9 (AAV9) vectors, or subcutaneously infused with irisin to uncover the role of FNDC5 in aging-related cardiac dysfunction. To verify the involvement of nucleotide-binding oligomerization domain-like receptor with a pyrin domain 3 (NLRP3) and AMP-activated protein kinase α (AMPKα), Nlrp3 or Ampkα2 global knockout mice were used. Besides, young mice were injected with AAV9-FNDC5 and maintained for 12 months to determine the preventive effect of FNDC5. Moreover, neonatal rat cardiomyocytes were stimulated with tumor necrosis factor-α (TNF-α) to examine the role of FNDC5 in vitro. We found that FNDC5 was downregulated in aging hearts. Cardiac-specific overexpression of FNDC5 or irisin infusion significantly suppressed NLRP3 inflammasome and cardiac inflammation, thereby attenuating aging-related cardiac remodeling and dysfunction. In addition, irisin treatment also inhibited cellular senescence in TNF-α-stimulated cardiomyocytes in vitro. Mechanistically, FNDC5 activated AMPKα through blocking the lysosomal degradation of glucagon-like peptide-1 receptor. More importantly, FNDC5 gene transfer in early life could delay the onset of cardiac dysfunction during aging process. We prove that FNDC5 improves aging-related cardiac dysfunction by activating AMPKα, and it might be a promising therapeutic target to support cardiovascular health in elderly populations.


Assuntos
Domínio de Fibronectina Tipo III , Cardiopatias , Proteínas Quinases Ativadas por AMP/metabolismo , Envelhecimento , Animais , Fibronectinas/genética , Camundongos , Camundongos Knockout , Proteína 3 que Contém Domínio de Pirina da Família NLR/metabolismo , Ratos , Fator de Necrose Tumoral alfa
17.
Cell Death Dis ; 12(7): 624, 2021 06 16.
Artigo em Inglês | MEDLINE | ID: mdl-34135313

RESUMO

Proteasomal activity is compromised in diabetic hearts that contributes to proteotoxic stresses and cardiac dysfunction. Osteocrin (OSTN) acts as a novel exercise-responsive myokine and is implicated in various cardiac diseases. Herein, we aim to investigate the role and underlying molecular basis of OSTN in diabetic cardiomyopathy (DCM). Mice received a single intravenous injection of the cardiotrophic adeno-associated virus serotype 9 to overexpress OSTN in the heart and then were exposed to intraperitoneal injections of streptozotocin (STZ, 50 mg/kg) for consecutive 5 days to generate diabetic models. Neonatal rat cardiomyocytes were isolated and stimulated with high glucose to verify the role of OSTN in vitro. OSTN expression was reduced by protein kinase B/forkhead box O1 dephosphorylation in diabetic hearts, while its overexpression significantly attenuated cardiac injury and dysfunction in mice with STZ treatment. Besides, OSTN incubation prevented, whereas OSTN silence aggravated cardiomyocyte apoptosis and injury upon hyperglycemic stimulation in vitro. Mechanistically, OSTN treatment restored protein kinase G (PKG)-dependent proteasomal function, and PKG or proteasome inhibition abrogated the protective effects of OSTN in vivo and in vitro. Furthermore, OSTN replenishment was sufficient to prevent the progression of pre-established DCM and had synergistic cardioprotection with sildenafil. OSTN protects against DCM via restoring PKG-dependent proteasomal activity and it is a promising therapeutic target to treat DCM.


Assuntos
Apoptose/efeitos dos fármacos , Cardiomiopatias Diabéticas/prevenção & controle , Proteínas Musculares/farmacologia , Miócitos Cardíacos/efeitos dos fármacos , Complexo de Endopeptidases do Proteassoma/metabolismo , Fatores de Transcrição/farmacologia , Animais , Células Cultivadas , Proteínas Quinases Dependentes de GMP Cíclico/metabolismo , Cardiomiopatias Diabéticas/enzimologia , Cardiomiopatias Diabéticas/patologia , Modelos Animais de Doenças , Proteína Forkhead Box O1/metabolismo , Masculino , Camundongos Endogâmicos C57BL , Proteínas Musculares/genética , Proteínas Musculares/metabolismo , Miócitos Cardíacos/enzimologia , Miócitos Cardíacos/patologia , Fosforilação , Estudo de Prova de Conceito , Proteínas Proto-Oncogênicas c-akt/genética , Proteínas Proto-Oncogênicas c-akt/metabolismo , Ratos , Proteínas Recombinantes/farmacologia , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
18.
Cell Signal ; 76: 109805, 2020 12.
Artigo em Inglês | MEDLINE | ID: mdl-33031934

RESUMO

Fibronectin type III domain-containing 5 (FNDC5) is a widely distributed transmembrane glycoprotein and can be proteolytically cleaved as irisin that has multiple benefits on human diseases. In this review, we will focus on the synthesis, cleavage, distribution, elimination, single nucleotide polymorphisms, protein structure and glycosylated modification of FNDC5 or the cleaved form irisin, and also summarize a brief knowledge on their biological functions.


Assuntos
Fibronectinas , Animais , Fibronectinas/química , Fibronectinas/fisiologia , Humanos
19.
Theranostics ; 10(24): 11013-11025, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33042267

RESUMO

Rationale: Clinical application of doxorubicin (DOX) is limited by its toxic cardiovascular side effects. Our previous study found that toll-like receptor (TLR) 5 deficiency attenuated cardiac fibrosis in mice. However, the role of TLR5 in DOX-induced cardiotoxicity remains unclear. Methods: To further investigate this, TLR5-deficient mice were subjected to a single intraperitoneal injection of DOX to mimic an acute model. Results: Here, we reported that TLR5 expression was markedly increased in response to DOX injection. Moreover, TLR5 deficiency exerted potent protective effects against DOX-related cardiac injury, whereas activation of TLR5 by flagellin exacerbated DOX injection-induced cardiotoxicity. Mechanistically, the effects of TLR5 were largely attributed to direct interaction with spleen tyrosine kinase to activate NADPH oxidase (NOX) 2, increasing the production of superoxide and subsequent activation of p38. The toxic effects of TLR5 activation in DOX-related acute cardiac injury were abolished by NOX2 deficiency in mice. Our further study showed that neutralizing antibody-mediated TLR5 depletion also attenuated DOX-induced acute cardiotoxicity. Conclusion: These findings suggest that TLR5 deficiency attenuates DOX-induced cardiotoxicity in mice, and targeting TLR5 may provide feasible therapies for DOX-induced acute cardiotoxicity.


Assuntos
Antibióticos Antineoplásicos/toxicidade , Cardiotoxicidade/genética , Doxorrubicina/toxicidade , Receptor 5 Toll-Like/metabolismo , Animais , Animais Recém-Nascidos , Antibióticos Antineoplásicos/administração & dosagem , Apoptose/efeitos dos fármacos , Apoptose/genética , Cardiotoxicidade/diagnóstico , Cardiotoxicidade/patologia , Modelos Animais de Doenças , Doxorrubicina/administração & dosagem , Ecocardiografia , Feminino , Coração/diagnóstico por imagem , Coração/efeitos dos fármacos , Humanos , Injeções Intraperitoneais , Masculino , Camundongos , Camundongos Knockout , Miocárdio/patologia , Miócitos Cardíacos , NADPH Oxidase 2/deficiência , NADPH Oxidase 2/genética , Neoplasias/tratamento farmacológico , Estresse Oxidativo/efeitos dos fármacos , Estresse Oxidativo/genética , Cultura Primária de Células , Ratos , Transdução de Sinais/efeitos dos fármacos , Transdução de Sinais/genética , Receptor 5 Toll-Like/genética , Testes de Toxicidade Aguda , Regulação para Cima/efeitos dos fármacos
20.
Redox Biol ; 37: 101747, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-33045622

RESUMO

Meteorin-like (METRNL) protein is a newly identified myokine that functions to modulate energy expenditure and inflammation in adipose tissue. Herein, we aim to investigate the potential role and molecular basis of METRNL in doxorubicin (DOX)-induced cardiotoxicity. METRNL was found to be abundantly expressed in cardiac muscle under physiological conditions that was decreased upon DOX exposure. Cardiac-specific overexpression of METRNL by adeno-associated virus serotype 9 markedly improved oxidative stress, apoptosis, cardiac dysfunction and survival status in DOX-treated mice. Conversely, knocking down endogenous METRNL by an intramyocardial injection of adenovirus exacerbated DOX-induced cardiotoxicity and death. Meanwhile, METRNL overexpression attenuated, while METRNL silence promoted oxidative damage and apoptosis in DOX-treated H9C2 cells. Systemic METRNL depletion by a neutralizing antibody aggravated DOX-related cardiac injury and dysfunction in vivo, which were notably alleviated by METRNL overexpression within the cardiomyocytes. Besides, we detected robust METRNL secretion from isolated rodent hearts and cardiomyocytes, but to a less extent in those with DOX treatment. And the beneficial effects of METRNL in H9C2 cells disappeared after the incubation with a METRNL neutralizing antibody. Mechanistically, METRNL activated SIRT1 via the cAMP/PKA pathway, and its antioxidant and antiapoptotic capacities were blocked by SIRT1 deficiency. More importantly, METRNL did not affect the tumor-killing action of DOX in 4T1 breast cancer cells and tumor-bearing mice. Collectively, cardiac-derived METRNL activates SIRT1 via cAMP/PKA signaling axis in an autocrine manner, which ultimately improves DOX-elicited oxidative stress, apoptosis and cardiac dysfunction. Targeting METRNL may provide a novel therapeutic strategy for the prevention of DOX-associated cardiotoxicity.


Assuntos
Cardiotoxicidade , Sirtuína 1 , Animais , Apoptose , Cardiotoxicidade/tratamento farmacológico , Cardiotoxicidade/metabolismo , Doxorrubicina/toxicidade , Camundongos , Miócitos Cardíacos/metabolismo , Estresse Oxidativo , Sirtuína 1/genética , Sirtuína 1/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA