Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Cell Biol ; 218(9): 3117-3133, 2019 09 02.
Artigo em Inglês | MEDLINE | ID: mdl-31315942

RESUMO

Cells continuously adapt cellular processes by integrating external and internal signals. In yeast, multiple stress signals regulate pheromone signaling to prevent mating under unfavorable conditions. However, the underlying crosstalk mechanisms remain poorly understood. Here, we show that mechanical stress activates Pkc1, which prevents lysis of pheromone-treated cells by inhibiting polarized growth. In vitro Pkc1 phosphorylates conserved residues within the RING-H2 domains of the scaffold proteins Far1 and Ste5, which are also phosphorylated in vivo. Interestingly, Pkc1 triggers dispersal of Ste5 from mating projections upon mechanically induced stress and during cell-cell fusion, leading to inhibition of the MAPK Fus3. Indeed, RING phosphorylation interferes with Ste5 membrane association by preventing binding to the receptor-linked Gßγ protein. Cells expressing nonphosphorylatable Ste5 undergo increased lysis upon mechanical stress and exhibit defects in cell-cell fusion during mating, which is exacerbated by simultaneous expression of nonphosphorylatable Far1. These results uncover a mechanical stress-triggered crosstalk mechanism modulating pheromone signaling, polarized growth, and cell-cell fusion during mating.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Proteína Quinase C/metabolismo , Proteínas de Saccharomyces cerevisiae/metabolismo , Saccharomyces cerevisiae/metabolismo , Transdução de Sinais , Estresse Mecânico , Proteínas Adaptadoras de Transdução de Sinal/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/genética , Proteínas Inibidoras de Quinase Dependente de Ciclina/metabolismo , Proteínas Quinases Ativadas por Mitógeno/genética , Proteínas Quinases Ativadas por Mitógeno/metabolismo , Fosforilação/genética , Proteína Quinase C/genética , Saccharomyces cerevisiae/genética , Proteínas de Saccharomyces cerevisiae/genética
2.
Cell Rep ; 12(5): 788-97, 2015 Aug 04.
Artigo em Inglês | MEDLINE | ID: mdl-26212332

RESUMO

Members of the tripartite motif (TRIM) protein family of RING E3 ubiquitin (Ub) ligases promote innate immune responses by catalyzing synthesis of polyubiquitin chains linked through lysine 63 (K63). Here, we investigate the mechanism by which the TRIM5α retroviral restriction factor activates Ubc13, the K63-linkage-specific E2. Structural, biochemical, and functional characterization of the TRIM5α:Ubc13-Ub interactions reveals that activation of the Ubc13-Ub conjugate requires dimerization of the TRIM5α RING domain. Our data explain how higher-order oligomerization of TRIM5α, which is promoted by the interaction with the retroviral capsid, enhances the E3 Ub ligase activity of TRIM5α and contributes to its antiretroviral function. This E3 mechanism, in which RING dimerization is transient and depends on the interaction of the TRIM protein with the ligand, is likely to be conserved in many members of the TRIM family and may have evolved to facilitate recognition of repetitive epitope patterns associated with infection.


Assuntos
Proteínas de Transporte/metabolismo , Poliubiquitina/biossíntese , Multimerização Proteica/fisiologia , Enzimas de Conjugação de Ubiquitina/metabolismo , Animais , Fatores de Restrição Antivirais , Proteínas de Transporte/genética , Células Cultivadas , Cães , Poliubiquitina/genética , Retroviridae/genética , Retroviridae/metabolismo , Proteínas com Motivo Tripartido , Enzimas de Conjugação de Ubiquitina/genética , Ubiquitina-Proteína Ligases , Proteínas Virais/genética , Proteínas Virais/metabolismo
3.
J Mol Biol ; 396(5): 1491-507, 2010 Mar 12.
Artigo em Inglês | MEDLINE | ID: mdl-20053355

RESUMO

If we understand the structural rules governing antibody (Ab)-antigen (Ag) interactions in a given virus, then we have the molecular basis to attempt to design and synthesize new epitopes to be used as vaccines or optimize the antibodies themselves for passive immunization. Comparing the binding of several different antibodies to related Ags should also further our understanding of general principles of recognition. To obtain and compare the three-dimensional structure of a large number of different complexes, however, we need a faster method than traditional experimental techniques. While biocomputational docking is fast, its results might not be accurate. Combining experimental validation with computational prediction may be a solution. As a proof of concept, here we isolated a monoclonal Ab from the blood of a human donor recovered from dengue virus infection, characterized its immunological properties, and identified its epitope on domain III of dengue virus E protein through simple and rapid NMR chemical shift mapping experiments. We then obtained the three-dimensional structure of the Ab/Ag complex by computational docking, using the NMR data to drive and validate the results. In an attempt to represent the multiple conformations available to flexible Ab loops, we docked several different starting models and present the result as an ensemble of models equally agreeing with the experimental data. The Ab was shown to bind a region accessible only in part on the viral surface, explaining why it cannot effectively neutralize the virus.


Assuntos
Complexo Antígeno-Anticorpo/química , Sequência de Aminoácidos , Anticorpos Antivirais/química , Reações Antígeno-Anticorpo , Antígenos Virais/química , Sítios de Ligação , Cristalografia por Raios X , Vírus da Dengue/genética , Vírus da Dengue/imunologia , Epitopos/química , Epitopos/genética , Humanos , Modelos Moleculares , Dados de Sequência Molecular , Complexos Multiproteicos/química , Ressonância Magnética Nuclear Biomolecular , Estrutura Terciária de Proteína , Proteínas Recombinantes/química , Proteínas Recombinantes/genética , Proteínas Recombinantes/imunologia , Proteínas do Envelope Viral/química , Proteínas do Envelope Viral/genética , Proteínas do Envelope Viral/imunologia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA