Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Bioenerg Biomembr ; 51(4): 291-300, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31273531

RESUMO

To understand the role of microRNA-141 (miR-141) in hypoxia/reoxygenation (H/R)-induced PC12 cell injury via modulation of Keap1/Nrf2 signaling pathway. PC12 cells were divided into Control, H/R, H/R + miR-141 mimics, H/R + NC, H/R + miR-141 inhibitor, H/R + siKeap1 and H/R + miR-141 inhibitors+siKeap1 groups. The expression of miR-141 and Keap1/Nrf2 pathway was measured by qRT-PCR and western blotting, cell viability evaluated by MTT assay while cell apoptosis tested by flow cytometry. Besides, MDA (malondialdehyde), SOD (Super Oxide Dismutase) and LDH (lactate dehydrogenase) levels were determined. DCFH-DA and JC-1 staining were used to measure ROS and mitochondrial membrane potential (MMP) respectively. Compared with Controls, PC12 cells induced by H/R exhibited decreased cell viability and increased cell apoptosis rate, with elevated MDA, LDH and ROS and reduced SOD levels; and meanwhile, MMP and miR-141 expression were declined, whereas cytoplasmic Nrf2 levels were enhanced with the downregulated nuclear Nrf2 level (all P < 0.05). However, these cells treated with miR-141 mimics and siKeap1 showed obvious improvement in H/R-induced cell injury, while miR-141 inhibitors presented significantly aggravated cell injury (both P < 0.05). Besides, siKeap1 can reverse the effect of miRNA-141 inhibitors on aggravating H/R-induced PC12 cell injury. miR-141-mediated Keap1/Nrf2 signaling pathway to promote cell viability, inhibit cell apoptosis and reduce oxidative stress of PC12 cells, thereby alleviating H/R-induced cell injury.


Assuntos
Regulação da Expressão Gênica , Proteína 1 Associada a ECH Semelhante a Kelch/biossíntese , MicroRNAs/biossíntese , Fator 2 Relacionado a NF-E2/metabolismo , Traumatismo por Reperfusão , Transdução de Sinais , Animais , Apoptose , Estresse Oxidativo , Células PC12 , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia , Traumatismo por Reperfusão/prevenção & controle
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA