Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Acta Pharmacol Sin ; 43(9): 2373-2385, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-35046516

RESUMO

The protein arginine methyltransferase 5 (PRMT5), which is highly expressed in tumour tissues, plays a crucial role in cancer development. However, the mechanism by which PRMT5 promotes cancer growth is poorly understood. Here, we report that PRMT5 contributes to lipid metabolism reprogramming, tumour growth and metastasis depending on the SIRT7-mediated desuccinylation of PRMT5 K387 in tumours. Mass spectrometric analysis identified PRMT5 lysine 387 as its succinylation site. Moreover, the desuccinylation of PRMT5 K387 enhances the methyltransferase activity of PRMT5. SIRT7 catalyses the desuccinylation of PRMT5 in cells. The SIRT7-mediated dessuccinylation of PRMT5 lysine 387 fails to bind to STUB1, decreasing PRMT5 ubiquitination and increasing the interaction between PRMT5 and Mep50, which promotes the formation of the PRMT5-Mep50 octamer. The PRMT5-Mep50 octamer increases PRMT5 methyltransferase activity, leading to arginine methylation of SREBP1a. The symmetric dimethylation of SREBP1a increases the levels of cholesterol, fatty acid, and triglyceride biogenesis in the cells, escaping degradation through the ubiquitin-proteasome pathway. Functionally, the desuccinylation of PRMT5 K387 promotes lipid metabolism reprogramming, tumour growth and metastasis in vitro and in vivo in tumours.


Assuntos
Neoplasias , Sirtuínas , Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Humanos , Metabolismo dos Lipídeos , Lisina , Proteína-Arginina N-Metiltransferases/genética , Proteína-Arginina N-Metiltransferases/metabolismo , Sirtuínas/metabolismo , Proteína de Ligação a Elemento Regulador de Esterol 1/metabolismo , Ubiquitina-Proteína Ligases/metabolismo
2.
Acta Pharmacol Sin ; 43(6): 1484-1494, 2022 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-34497374

RESUMO

The epigenetic modification of hepatitis B virus (HBV) covalently closed circular DNA (cccDNA) plays a crucial role in cccDNA transcription and viral persistence. Interferon-α (IFN-α) is a pivotal agent against HBV cccDNA. However, the mechanism by which IFN-α modulates the epigenetic regulation of cccDNA remains poorly understood. In this study, we report that IFN-α2b enhances the histone deacetylase 3 (HDAC3)-mediated de-2-hydroxyisobutyrylation of histone H4 lysine 8 (H4K8) on HBV cccDNA minichromosome to restrict the cccDNA transcription in liver. By screening acetyltransferases and deacetylases, we identified that HDAC3 was an effective restrictor of HBV transcription and replication. Moreover, we found that HDAC3 was able to mediate the de-2-hydroxyisobutyrylation of H4K8 in HBV-expressing hepatoma cells. Then, the 2-hydroxyisobutyrylation of histone H4K8 (H4K8hib) was identified on the HBV cccDNA minichromosome, promoting the HBV transcription and replication. The H4K8hib was regulated by HDAC3 depending on its deacetylase domain in the system. The low level of HDAC3 and high level of H4K8hib were observed in the liver tissues from HBV-infected human liver-chimeric mice. The levels of H4K8hib on HBV cccDNA minichromosome were significantly elevated in the liver biopsy specimens from clinical hepatitis B patients, which was consistent with the high transcriptional activity of cccDNA. Strikingly, IFN-α2b effectively facilitated the histone H4K8 de-2-hydroxyisobutyrylation mediated by HDAC3 on the HBV cccDNA minichromosome in primary human hepatocytes and hepatoma cells, leading to the inhibition of HBV transcription and replication. Our finding provides new insights into the mechanism by which IFN-α modulates the epigenetic regulation of HBV cccDNA minichromosome.


Assuntos
Carcinoma Hepatocelular , Neoplasias Hepáticas , Animais , Carcinoma Hepatocelular/genética , DNA Circular/farmacologia , DNA Viral/genética , DNA Viral/farmacologia , Epigênese Genética , Vírus da Hepatite B/genética , Histona Desacetilases , Histonas/metabolismo , Humanos , Interferon-alfa/genética , Interferon-alfa/metabolismo , Interferon-alfa/farmacologia , Neoplasias Hepáticas/genética , Camundongos , Replicação Viral
3.
Biochem Biophys Res Commun ; 560: 172-178, 2021 06 30.
Artigo em Inglês | MEDLINE | ID: mdl-34000466

RESUMO

Aspirin can efficiently inhibit the glycolysis and proliferation of cancer cells, however, the underlying mechanism is poorly understood. Here, we report that aspirin attenuates the glycolysis and proliferation of hepatoma cells through modulating the levels of lysine 2-hydroxyisobutyrylation (Khib) of enolase 1 (ENO1). We found that aspirin decreased the levels of glucose consumption and lactate production in hepatoma cells. Moreover, 4 mM aspirin reduced the activities of ENO1, a key enzyme of glycolysis, and decreased the levels of ENO1 Khib in the cells. Interestingly, we identified that 4 mM aspirin could decrease the levels of Khib on many proteins by using pan Khib antibody in the cells. Interestingly, the activities of ENO1 could be rescued by the transient overexpression of ENO1, but not by ENO1 mutant (K281R). Moreover, we identified that the C646, an inhibitor of p300 which is a writer of Khib, could reduce the levels of ENO1 Khib, resulting in the decrease of ENO1 activities. The treatment with PDTC, an inhibitor of NF-κB which is a target of aspirin, could work well as C646 in the cells. Both of aspirin and C646 (or PDTC) displayed a stronger effect than the single treatment in the system. Functionally, ENO1, but not ENO1 mutant (K281R), could rescue the aspirin-induced inhibition of proliferation of liver cancer cells in vitro, suggesting that ENO1K281 is involved in the aspirin-mediated inhibition of liver cancer. Our finding provides new insights into the mechanism by which aspirin attenuates the glycolysis and proliferation of hepatoma cells.


Assuntos
Antineoplásicos/farmacologia , Aspirina/farmacologia , Biomarcadores Tumorais/antagonistas & inibidores , Carcinoma Hepatocelular/tratamento farmacológico , Proteínas de Ligação a DNA/antagonistas & inibidores , Neoplasias Hepáticas/tratamento farmacológico , Fosfopiruvato Hidratase/antagonistas & inibidores , Proteínas Supressoras de Tumor/antagonistas & inibidores , Antineoplásicos/uso terapêutico , Aspirina/uso terapêutico , Biomarcadores Tumorais/química , Biomarcadores Tumorais/metabolismo , Carcinoma Hepatocelular/enzimologia , Carcinoma Hepatocelular/metabolismo , Carcinoma Hepatocelular/patologia , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Proteínas de Ligação a DNA/química , Proteínas de Ligação a DNA/metabolismo , Glicólise/efeitos dos fármacos , Humanos , Neoplasias Hepáticas/enzimologia , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patologia , Lisina/metabolismo , Fosfopiruvato Hidratase/química , Fosfopiruvato Hidratase/metabolismo , Proteínas Supressoras de Tumor/química , Proteínas Supressoras de Tumor/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA