Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Mol Cell Proteomics ; 21(10): 100411, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-36089195

RESUMO

Chromatin structure, transcription, DNA replication, and repair are regulated via locus-specific incorporation of histone variants and posttranslational modifications that guide effector chromatin-binding proteins. Here we report unbiased, quantitative interactomes for the replication-coupled (H3.1) and replication-independent (H3.3) histone H3 variants based on BioID proximity labeling, which allows interactions in intact, living cells to be detected. Along with a significant proportion of previously reported interactions detected by affinity purification followed by mass spectrometry, three quarters of the 608 histone-associated proteins that we identified are new, uncharacterized histone associations. The data reveal important biological nuances not captured by traditional biochemical means. For example, we found that the chromatin assembly factor-1 histone chaperone not only deposits the replication-coupled H3.1 histone variant during S-phase but also associates with H3.3 throughout the cell cycle in vivo. We also identified other variant-specific associations, such as with transcription factors, chromatin regulators, and with the mitotic machinery. Our proximity-based analysis is thus a rich resource that extends the H3 interactome and reveals new sets of variant-specific associations.


Assuntos
Chaperonas de Histonas , Histonas , Histonas/metabolismo , Chaperonas de Histonas/genética , Chaperonas de Histonas/metabolismo , Cromatina , Fator 1 de Modelagem da Cromatina/genética , Fator 1 de Modelagem da Cromatina/metabolismo , Fatores de Transcrição/metabolismo , Nucleossomos
2.
Acta Neuropathol ; 144(5): 1027-1048, 2022 11.
Artigo em Inglês | MEDLINE | ID: mdl-36070144

RESUMO

Histone H3 mutations at amino acids 27 (H3K27M) and 34 (H3G34R) are recurrent drivers of pediatric-type high-grade glioma (pHGG). H3K27M mutations lead to global disruption of H3K27me3 through dominant negative PRC2 inhibition, while H3G34R mutations lead to local losses of H3K36me3 through inhibition of SETD2. However, their broader oncogenic mechanisms remain unclear. We characterized the H3.1K27M, H3.3K27M and H3.3G34R interactomes, finding that H3K27M is associated with epigenetic and transcription factor changes; in contrast H3G34R removes a break on cryptic transcription, limits DNA methyltransferase access, and alters mitochondrial metabolism. All 3 mutants had altered interactions with DNA repair proteins and H3K9 methyltransferases. H3K9me3 was reduced in H3K27M-containing nucleosomes, and cis-H3K9 methylation was required for H3K27M to exert its effect on global H3K27me3. H3K9 methyltransferase inhibition was lethal to H3.1K27M, H3.3K27M and H3.3G34R pHGG cells, underscoring the importance of H3K9 methylation for oncohistone-mutant gliomas and suggesting it as an attractive therapeutic target.


Assuntos
Glioma , Histonas , Aminoácidos/genética , Criança , DNA , Glioma/genética , Glioma/metabolismo , Histonas/genética , Humanos , Mutação/genética , Nucleossomos , Fatores de Transcrição/genética
3.
Proc Natl Acad Sci U S A ; 113(4): E450-8, 2016 Jan 26.
Artigo em Inglês | MEDLINE | ID: mdl-26759368

RESUMO

The adoptive transfer of autologous T cells engineered to express a chimeric antigen receptor (CAR) has emerged as a promising cancer therapy. Despite impressive clinical efficacy, the general application of current CAR-T--cell therapy is limited by serious treatment-related toxicities. One approach to improve the safety of CAR-T cells involves making their activation and proliferation dependent upon adaptor molecules that mediate formation of the immunological synapse between the target cancer cell and T-cell. Here, we describe the design and synthesis of structurally defined semisynthetic adaptors we refer to as "switch" molecules, in which anti-CD19 and anti-CD22 antibody fragments are site-specifically modified with FITC using genetically encoded noncanonical amino acids. This approach allows the precise control over the geometry and stoichiometry of complex formation between CD19- or CD22-expressing cancer cells and a "universal" anti-FITC-directed CAR-T cell. Optimization of this CAR-switch combination results in potent, dose-dependent in vivo antitumor activity in xenograft models. The advantage of being able to titrate CAR-T-cell in vivo activity was further evidenced by reduced in vivo toxicity and the elimination of persistent B-cell aplasia in immune-competent mice. The ability to control CAR-T cell and cancer cell interactions using intermediate switch molecules may expand the scope of engineered T-cell therapy to solid tumors, as well as indications beyond cancer therapy.


Assuntos
Antígenos CD19/imunologia , Antígenos de Neoplasias/imunologia , Imunoterapia Adotiva/métodos , Leucemia de Células B/terapia , Engenharia de Proteínas/métodos , Receptores de Antígenos de Linfócitos T/imunologia , Lectina 2 Semelhante a Ig de Ligação ao Ácido Siálico/imunologia , Especificidade do Receptor de Antígeno de Linfócitos T , Linfócitos T/imunologia , Animais , Azidas , Linfócitos B/imunologia , Linfócitos B/patologia , Linhagem Celular Tumoral , Citotoxicidade Imunológica , Feminino , Fluoresceína-5-Isotiocianato , Vetores Genéticos , Humanos , Imunoterapia Adotiva/efeitos adversos , Lentivirus/genética , Ativação Linfocitária , Linfopenia/etiologia , Linfopenia/prevenção & controle , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Endogâmicos NOD , Camundongos SCID , Modelos Moleculares , Fenilalanina/análogos & derivados , Conformação Proteica , Receptores de Antígenos de Linfócitos T/genética , Proteínas Recombinantes de Fusão/imunologia , Anticorpos de Cadeia Única/genética , Anticorpos de Cadeia Única/imunologia , Linfócitos T/transplante , Transdução Genética , Ensaios Antitumorais Modelo de Xenoenxerto
4.
Angew Chem Int Ed Engl ; 55(26): 7520-4, 2016 06 20.
Artigo em Inglês | MEDLINE | ID: mdl-27145250

RESUMO

Chimeric antigen receptor T (CAR-T) cells have demonstrated promising results against hematological malignancies, but have encountered significant challenges in translation to solid tumors. To overcome these hurdles, we have developed a switchable CAR-T cell platform in which the activity of the engineered cell is controlled by dosage of an antibody-based switch. Herein, we apply this approach to Her2-expressing breast cancers by engineering switch molecules through site-specific incorporation of FITC or grafting of a peptide neo-epitope (PNE) into the anti-Her2 antibody trastuzumab (clone 4D5). We demonstrate that both switch formats can be readily optimized to redirect CAR-T cells (specific for the corresponding FITC or PNE) to Her2-expressing tumor cells, and afford dose-titratable activation of CAR-T cells ex vivo and complete clearance of the tumor in rodent xenograft models. This strategy may facilitate the application of immunotherapy to solid tumors by affording comparable efficacy with improved safety owing to switch-based control of the CAR-T response.


Assuntos
Neoplasias da Mama/terapia , Genes de Troca , Imunoterapia , Receptores de Antígenos de Linfócitos T , Animais , Relação Dose-Resposta a Droga , Feminino , Genes de Troca/genética , Xenoenxertos , Humanos , Camundongos , Receptor ErbB-2/efeitos dos fármacos , Receptor ErbB-2/metabolismo
5.
STAR Protoc ; 4(1): 102128, 2023 03 17.
Artigo em Inglês | MEDLINE | ID: mdl-36853679

RESUMO

We present a protocol to generate high-quality fluorescently labeled DNA substrates that can be used for biochemical assays, including DNA-binding and nuclease activity assays. We describe polyacrylamide-gel-electrophoresis-based purification of DNA oligonucleotides, followed by annealing the oligonucleotides and purifying the annealed substrates using anion-exchange chromatography. This protocol circumvents the use of radioisotopes, which require training and dedicated equipment for safe handling and necessitate specialized waste disposal. This protocol is amenable to varying lengths of oligonucleotides and DNA substrates. For complete details on the use and execution of this protocol, please refer to Payliss and Tse et al. (2022).1.


Assuntos
DNA , Oligonucleotídeos , Bioensaio , Eletroforese em Gel de Poliacrilamida
6.
Cell Rep ; 41(4): 111537, 2022 10 25.
Artigo em Inglês | MEDLINE | ID: mdl-36288699

RESUMO

The DNA repair scaffold SLX4 has multifaceted roles in genome stability, many of which depend on structure-selective endonucleases. SLX4 coordinates the cell cycle-regulated assembly of SLX1, MUS81-EME1, and XPF-ERCC1 into a tri-nuclease complex called SMX. Mechanistically, how the mitotic kinase CDK1 regulates the interaction between SLX4 and MUS81-EME1 remains unclear. Here, we show that CDK1-cyclin B phosphorylates SLX4 residues T1544, T1561, and T1571 in the MUS81-binding region (SLX4MBR). Phosphorylated SLX4MBR relaxes the substrate specificity of MUS81-EME1 and stimulates cleavage of replication and recombination structures, providing a biochemical explanation for the chromosome pulverization that occurs when SLX4 binds MUS81 in S-phase. Remarkably, phosphorylation of SLX4MBR drives folding of an SAP domain, which underpins the high-affinity interaction with MUS81. We also report the structure of phosphorylated SLX4MBR and identify the MUS81-binding interface. Our work provides mechanistic insights into how cell cycle-regulated phosphorylation of SLX4 drives the recruitment and activation of MUS81-EME1.


Assuntos
Endonucleases , Recombinases , Endonucleases/metabolismo , Fosforilação , Recombinases/metabolismo , Proteínas de Ligação a DNA/metabolismo , Reparo do DNA , Ciclina B/metabolismo , Endodesoxirribonucleases/metabolismo
7.
Nat Commun ; 11(1): 441, 2020 01 23.
Artigo em Inglês | MEDLINE | ID: mdl-31974375

RESUMO

Prostate cancer is the second most commonly diagnosed malignancy among men worldwide. Recurrently mutated in primary and metastatic prostate tumors, FOXA1 encodes a pioneer transcription factor involved in disease onset and progression through both androgen receptor-dependent and androgen receptor-independent mechanisms. Despite its oncogenic properties however, the regulation of FOXA1 expression remains unknown. Here, we identify a set of six cis-regulatory elements in the FOXA1 regulatory plexus harboring somatic single-nucleotide variants in primary prostate tumors. We find that deletion and repression of these cis-regulatory elements significantly decreases FOXA1 expression and prostate cancer cell growth. Six of the ten single-nucleotide variants mapping to FOXA1 regulatory plexus significantly alter the transactivation potential of cis-regulatory elements by modulating the binding of transcription factors. Collectively, our results identify cis-regulatory elements within the FOXA1 plexus mutated in primary prostate tumors as potential targets for therapeutic intervention.


Assuntos
Fator 3-alfa Nuclear de Hepatócito/genética , Mutação , Neoplasias da Próstata/genética , Sequências Reguladoras de Ácido Nucleico , Sítios de Ligação , Linhagem Celular Tumoral , Proliferação de Células/genética , Regulação Neoplásica da Expressão Gênica , Humanos , Masculino , Fatores de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA