RESUMO
Alzheimer's disease (AD), the most prevalent neurodegenerative disease, is characterized by progressive and irreversible impairment of cognitive functions. However, its etiology is poorly understood, and therapeutic interventions are limited. Our preliminary study revealed that wasp venom (WV) from Vespa velutina nigrithorax can prevent lipopolysaccharide-induced inflammatory signaling, which is strongly implicated in AD pathogenesis. Therefore, we examined whether WV administration can ameliorate major AD phenotypes in the 5xFAD transgenic mouse model. Adult 5xFAD transgenic mice (6.5 months of age) were treated with WV by intraperitoneal injection at 250 or 400 µg/kg body weight once weekly for 14 consecutive weeks. This administration regimen improved procedural, spatial, and working memory deficits as assessed by the passive avoidance, Morris water maze, and Y-maze tasks, respectively. It also attenuated histological damage and amyloid-beta plaque formation in the hippocampal region and decreased expression levels of pro-inflammatory factors in the hippocampus and cerebrum, while it reduced oxidative stress markers (malondialdehyde in the brain and liver and 8-hydroxy-2'-deoxyguanosine in the plasma). Overall, these findings suggest that long-term administration of WV may alleviate AD-related symptoms and pathological phenotypes.
Assuntos
Doença de Alzheimer , Venenos de Artrópodes , Doenças Neurodegenerativas , Camundongos , Animais , Camundongos Transgênicos , Doença de Alzheimer/tratamento farmacológico , Doenças Neurodegenerativas/patologia , Encéfalo/patologia , Venenos de Artrópodes/uso terapêutico , Modelos Animais de Doenças , Peptídeos beta-AmiloidesRESUMO
Determining the mechanical properties of fault-core-zone materials is challenging because of the low strength of such materials, which affects field sampling, specimen preparation, and laboratory testing. We overcame this problem by preparing and testing mechanical properties of 132 artificial fault-core-zone specimens consisting of mixtures of breccia, sand, clay, and water. The unconfined compressive strength (UCS), elastic modulus (E), and penetration resistance value (PRV) of these fault-core-zone materials were measured, and the effects of breccia content and water content on mechanical properties were assessed. Results show that UCS is inversely proportional to breccia content and water content, and that E is inversely proportional to water content. Furthermore, the inverse relationship of UCS with water content varies with breccia content. UCS is proportional to both PRV and E, and the relationship for each varies with breccia content. High coefficients of determination (R2 = 0.62-0.88) between the parameters suggest that breccia content, water content, and PRV are potentially useful parameters for estimating the mechanical properties of fault core zones.
Assuntos
Água , Força CompressivaRESUMO
ETHNOPHARMACOLOGICAL RELEVANCE: The rhizome of Dioscorea batatas Decne (called Chinses yam) widely distributed in East Asian countries including China, Japan, Korea and Taiwan has long been used in oriental folk medicine owing to its tonic, antitussive, expectorant and anti-ulcerative effects. It has been reported to have anti-inflammatory, antioxidative, cholesterol-lowering, anticholinesterase, growth hormone-releasing, antifungal and immune cell-stimulating activities. AIM OF THE STUDY: Neuroinflammation caused by activated microglia contributes to neuronal dysfunction and neurodegeneration. In the present study, the anti-neuroinflammatory activity of 6,7-dihydroxy-2,4-dimethoxy phenanthrene (DHDMP), a phenanthrene compound isolated from Dioscorea batatas Decne, was examined in microglial and neuronal cells. MATERIALS AND METHODS: A natural phenanthrene compound, DHDMP, was isolated from the peel of Dioscorea batatas Decne. The anti-neuroinflammatory capability of the compound was examined using the co-culture system of BV2 murine microglial and HT22 murine neuronal cell lines. The expression levels of inflammatory mediators and cytoprotective proteins in the cells were quantified by enzyme-linked immunosorbent assay and Western blot analysis. RESULTS: DHDMP at the concentrations of ≤1 µg/mL did not exhibit a cytotoxic effect for BV2 and HT22 cells. Rather DHDMP effectively restored the growth rate of HT22 cells, which was reduced by co-culture with lipopolysaccharide (LPS)-treated BV2 cells. DHDMP significantly decreased the production of proinflammatory mediators, such as nitric oxide, tumor necrosis factor-α, interleukin-6, inducible nitric oxide synthase, and cyclooxygenase-2 in BV2 cells. Moreover, DHDMP strongly inhibited the nuclear translocation of nuclear factor κB (NF-κB) and phosphorylation of p38 mitogen-activated protein kinase (MAPK) in BV2 cells. The compound did not affect the levels and phosphorylation of ERK and JNK. Concurrently, DHDMP increased the expression of heme oxygenase-1 (HO-1), an inducible cytoprotective enzyme, in HT22 cells. CONCLUSIONS: Our findings indicate that DHDMP effectively dampened LPS-mediated inflammatory responses in BV2 microglial cells by suppressing transcriptional activity of NF-κB and its downstream mediators and contributed to HT22 neuronal cell survival. This study provides insight into the therapeutic potential of DHDMP for inflammation-related neurological diseases.
Assuntos
Dioscorea/química , Regulação da Expressão Gênica/efeitos dos fármacos , Inflamação/tratamento farmacológico , Microglia/efeitos dos fármacos , Fenantrenos/farmacologia , Animais , Humanos , Microglia/metabolismo , NF-kappa B , Fenantrenos/química , Ratos , Proteínas Quinases p38 Ativadas por MitógenoRESUMO
This study investigated the effects of wasp venom (WV) from the yellow-legged hornet, Vespa velutina, on scopolamine (SCO)-induced memory deficits in mice, as well as the antioxidant activity in HT22 murine hippocampal neuronal cells in parallel comparison with bee venom (BV). The WV was collected from the venom sac, freeze-dried. Both venoms exhibited free radical scavenging capabilities in a concentration-dependent manner. In addition, the venom treatment enhanced cell viability at the concentrations of ≤40 µg/mL of WV and ≤4 µg/mL of BV in glutamate-treated HT22 cells, and increased the transcriptional activity of the antioxidant response element (ARE), a cis-acting enhancer which regulates the expression of nuclear factor erythroid 2-related factor 2 (Nrf2)-downstream antioxidant enzymes. Concurrently, WV at 20 µg/mL significantly increased the expression of a key antioxidant enzyme heme oxygenase 1 (HO-1) in HT22 cells despite no significant changes observed in the nuclear level of Nrf2. Furthermore, the intraperitoneal administration of WV to SCO-treated mice at doses ranged from 250 to 500 µg/kg body weight ameliorated memory impairment behavior, reduced histological injury in the hippocampal region, and reduced oxidative stress biomarkers in the brain and blood of SCO-treated mice. Our findings demonstrate that WV possess the potential to improve learning and memory deficit in vivo while further study is needed for the proper dose and safety measures and clinical effectiveness.
Assuntos
Venenos de Abelha , Escopolamina , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Antioxidantes/uso terapêutico , Venenos de Abelha/farmacologia , Transtornos da Memória/induzido quimicamente , Transtornos da Memória/tratamento farmacológico , Camundongos , Fator 2 Relacionado a NF-E2/genética , Fator 2 Relacionado a NF-E2/metabolismo , Estresse Oxidativo , Escopolamina/uso terapêutico , Escopolamina/toxicidade , Venenos de Vespas/farmacologiaRESUMO
The aim of this study was to compare the anti-inflammatory effect of wasp venom (WV) from the yellow-legged hornet (Vespa velutina) with that of bee venom (BV) on BV-2 murine microglial cells. WV was collected from the venom sac, freeze-dried, and used for in vitro examinations. WV and BV were non-toxic to BV-2 cells at concentrations of 160 and 12 µg/mL or lower, respectively. Treatment with WV reduced the secretion of nitric oxide and proinflammatory cytokines, including interleukin-6 and tumor necrosis factor alpha, from BV-2 cells activated by lipopolysaccharide (LPS). Western blot analysis revealed that WV and BV decreased the expression levels of inflammation markers, including inducible nitric oxide synthase and cyclooxygenase-2. In addition, WV decreased the nuclear translocation of nuclear factor κB (NF-κB), which is a key transcription factor in the regulation of cellular inflammatory response. Cumulatively, the results demonstrated that WV inhibited LPS-induced neuroinflammation in microglial cells by suppressing the NF-κB-mediated signaling pathway, which warrants further studies to confirm its therapeutic potential for neurodegenerative diseases.
RESUMO
Ceriporia lacerata (CL) is a species of white rot fungi. In this study, we have examined the beneficial effect of CL on scopolamine-induced memory impairment in mice. A freeze-dried CL mycelial culture broth was dissolved and orally administered to scopolamine-treated C57BL/6J mice followed by behavioral tests using the Y-maze, passive avoidance, and Morris water maze tasks. CL administration at a daily dose of 200 mg/kg body weight resulted in restoration of exploration reduction and improvement of associative and spatial learning and memory impairment in scopolamine-treated mice. Concomitantly, heme oxygenase-1 was highly expressed in the hippocampal region of CL-administered mice. Moreover, the ethanolic extract of CL significantly increased the transcriptional activity of antioxidant response element and attenuated the glutamate-induced cytotoxicity in HT22 mouse hippocampal neuronal cells. These findings suggest that the CL intake can confer a beneficial effect on learning and memory presumably through protecting hippocampal neuronal cells from oxidative stress-induced damage. SUPPLEMENTARY INFORMATION: The online version contains supplementary material available at 10.1007/s10068-021-00945-5.