Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Sci Rep ; 12(1): 17745, 2022 Oct 22.
Artigo em Inglês | MEDLINE | ID: mdl-36273076

RESUMO

Stretchable wavy circuit is an essential component in flexible devices, which have wide applications in various fields. In the industrial field, the stretching ability of the circuit is a crucial factor for flexible devices. Therefore, this study proposes laser carving method to increase both stretch ratio and device resolution of the flexible device. The results obtained from the experiment and finite element analysis verifies that laser carving on the wavy circuit increases the maximum stretch ratio of wavy circuit. The obtained analytic model confirms that laser carving generates tilted section on the wavy circuit, and reduces the bending rigidity of the curvy point of the wavy circuit. The study also verified that laser carved groove induces crack propagation into vertical to the circuit direction, so that the laser carved wavy circuit is less likely to disconnect than uncarved wavy circuit. Due to the reduced bending rigidity and crack induce, the wavy circuit stretches more than the conventional uncarved wavy circuit.

2.
Sci Rep ; 7(1): 967, 2017 04 19.
Artigo em Inglês | MEDLINE | ID: mdl-28424458

RESUMO

Diarylethene is one of the photo-responsive materials that show rapid and reversible changes in their color/electrochemical properties and macroscopic deformations in the crystalline phase by light irradiation. Photoisomerization is the main cause of the photo reactivity of diarylethene, and we established a statistical model based on the density matrix formalism, which predicts quantitative isomerization progress as a population term. The model reflects photo-switching properties of the target molecule, which were characterized by first principle calculations, and external stimulus factors (light irradiation conditions and temperature). By merging light penetration physics with the model, we derived light penetration depth dependent isomerization progress to theoretically investigate photodeformation of single crystal. The model well reproduced in-plane shear deformation under ultraviolet light irradiation which would provide guideline for photoactuator design. In addition, the statistical model addressed crucial findings (primary stimuli and molecular design parameter for increasing the isomerization rate, external stimuli enhancing fluorescence performance) itself.

3.
Sci Rep ; 6: 20026, 2016 Feb 01.
Artigo em Inglês | MEDLINE | ID: mdl-26828417

RESUMO

A liquid crystal network whose chromophores are functionalized by photochromic dye exhibits light-induced mechanical behaviour. As a result, the micro-scaled thermotropic traits of the network and the macroscopic phase behaviour are both influenced as light alternates the shape of the dyes. In this paper, we present an analysis of this photomechanical behaviour based on the proposed multiscale framework, which incorporates the molecular details of microstate evolution into a continuum-based understanding. The effects of trans-to-cis photoisomerization driven by actinic light irradiation are first examined using molecular dynamics simulations, and are compared against the predictions of the classical dilution model; this reveals certain characteristics of mesogenic interaction upon isomerization, followed by changes in the polymeric structure. We then upscale the thermotropic phase-related information with the aid of a nonlinear finite element analysis; macroscopic deflection with respect to the wide ranges of temperature and actinic light intensity are thereby examined, which reveals that the classical model underestimates the true deformation. This work therefore provides measures for analysing photomechanics in general by bridging the gap between the micro- and macro-scales.

4.
ACS Appl Mater Interfaces ; 8(36): 24008-24, 2016 Sep 14.
Artigo em Inglês | MEDLINE | ID: mdl-27552297

RESUMO

We investigated the optical and thermal actuation behavior of densely cross-linked photoresponsive polymer (PRP) and polymer nanocomposites containing gold nanoparticles (PRP/Au) using all-atom molecular dynamics (MD) simulations. The modeled molecular structures contain a large number of photoreactive mesogens with linear orientation. Flexible side chains are interconnected through covalent bonds under periodic boundary conditions. A switchable dihedral potential was applied on a diazene moiety to describe the photochemical trans-to-cis isomerization. To quantify the photoinduced molecular reorientation and its effect on the macroscopic actuation of the neat PRP and PRP/Au materials, we characterized the photostrain and other material properties including elastic stiffness and thermal stability according to the photoisomerization ratio of the reactive groups. We particularly examined the effect of nanoparticle size on the photothermal actuation by varying the diameter of the nanofiller (10-20 Å) under the same volume fraction of 1.62%. The results indicated that the insertion of the gold nanoparticles enlarges the photostrain of the material while enhancing its mechanical stiffness and thermal stability. When the diameter of the nanoparticle reaches a size similar to or smaller than the length of the mesogen, the interfacial energy between the nanofiller and the surrounding polymer matrix does not significantly affect the alignment of the mesogens, but rather the adsorption energy at the interface generates a stable interphase layer. Hence, these improvements were more effective as the size of the gold nanoparticle decreased. The present findings suggest a wider analysis of the nanofiller-reinforced PRP composites and could be a guide for the mechanical design of the PRP actuator system.

5.
Artigo em Inglês | MEDLINE | ID: mdl-25974512

RESUMO

As a polymeric system incorporating rigid molecules within its structure, the liquid-crystal network (LCN) has been envisaged as a novel heterogeneous material. Under the influence of external stimuli, the orientational order of the liquid-crystalline phase becomes dilute and overall anisotropy is hence decreased; the actinic light absorbed by photochromic molecules, for example, induces the geometric isomerization and subsequently yields internal stress within the local network. In this study we investigate light- and temperature-induced spontaneous deformations of the LCN structure via a three-dimensional finite element model that incorporates geometric nonlinearity with a photomechanical constitutive model. We first examine the bending behavior and its nonlinearity and then parametrically study the various behaviors that stem from different origins ranging from the microscale to the macroscale: (i) the geometry of the LCN film, (ii) the macroscopic global order, (iii) the distorted mesogenic orientation due to the Fredericks distortion, and (iv) defect-induced instability. These interrelated behaviors demonstrate both the simulation capability and the necessity of the presenting framework. By employing a nonlinear consideration along with a microscopic shape parameter r the present approach facilitates further understanding of photomechanical physics such as the deconvolution of various stimuli and the deformed shape obtained due to snap-through instability. Furthermore, this study may offer insight into the design of light-sensitive actuation systems by deepening our knowledge and providing an efficient measure.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA