Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
PLoS Pathog ; 19(3): e1011269, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36996244

RESUMO

Trypanosoma brucei spp. develop into mammalian-infectious metacyclic trypomastigotes inside tsetse salivary glands. Besides acquiring a variant surface glycoprotein (VSG) coat, little is known about the metacyclic expression of invariant surface antigens. Proteomic analyses of saliva from T. brucei-infected tsetse flies identified, in addition to VSG and Brucei Alanine-Rich Protein (BARP) peptides, a family of glycosylphosphatidylinositol (GPI)-anchored surface proteins herein named as Metacyclic Invariant Surface Proteins (MISP) because of its predominant expression on the surface of metacyclic trypomastigotes. The MISP family is encoded by five paralog genes with >80% protein identity, which are exclusively expressed by salivary gland stages of the parasite and peak in metacyclic stage, as shown by confocal microscopy and immuno-high resolution scanning electron microscopy. Crystallographic analysis of a MISP isoform (MISP360) and a high confidence model of BARP revealed a triple helical bundle architecture commonly found in other trypanosome surface proteins. Molecular modelling combined with live fluorescent microscopy suggests that MISP N-termini are potentially extended above the metacyclic VSG coat, and thus could be tested as a transmission-blocking vaccine target. However, vaccination with recombinant MISP360 isoform did not protect mice against a T. brucei infectious tsetse bite. Lastly, both CRISPR-Cas9-driven knock out and RNAi knock down of all MISP paralogues suggest they are not essential for parasite development in the tsetse vector. We suggest MISP may be relevant during trypanosome transmission or establishment in the vertebrate's skin.


Assuntos
Parasitos , Trypanosoma brucei brucei , Trypanosoma , Animais , Camundongos , Trypanosoma brucei brucei/genética , Proteínas de Membrana , Alanina , Proteômica , Glândulas Salivares/parasitologia , Mamíferos , Glicoproteínas de Membrana
2.
Parasitology ; 146(14): 1773-1784, 2019 12.
Artigo em Inglês | MEDLINE | ID: mdl-31190665

RESUMO

Filarial nematodes possess glutathione transferases (GSTs), ubiquitous enzymes with the potential to detoxify xenobiotic and endogenous substrates, and modulate the host immune system, which may aid worm infection establishment, maintenance and survival in the host. Here we have identified and characterized a σ class glycosylated GST (OoGST1), from the cattle-infective filarial nematode Onchocerca ochengi, which is homologous (99% amino acid identity) with an immunodominant GST and potential vaccine candidate from the human parasite, O. volvulus, (OvGST1b). Onchocerca ochengi native GSTs were purified using a two-step affinity chromatography approach, resolved by 2D and 1D SDS-PAGE and subjected to enzymic deglycosylation revealing the existence of at least four glycoforms. A combination of lectin-blotting and mass spectrometry (MS) analyses of the released N-glycans indicated that OoGST1 contained mainly oligomannose Man5GlcNAc2 structure, but also hybrid- and larger oligommanose-type glycans in a lower proportion. Furthermore, purified OoGST1 showed prostaglandin synthase activity as confirmed by Liquid Chromatography (LC)/MS following a coupled-enzyme assay. This is only the second reported and characterized glycosylated GST and our study highlights its potential role in host-parasite interactions and use in the study of human onchocerciasis.


Assuntos
Glutationa Transferase/genética , Glutationa Transferase/metabolismo , Onchocerca/enzimologia , Onchocerca/genética , Oncocercose/veterinária , Sequência de Aminoácidos , Animais , Bovinos/parasitologia , Doenças dos Bovinos/parasitologia , Cromatografia de Afinidade , Cromatografia Líquida , Feminino , Glicosilação , Espectrometria de Massas , Onchocerca volvulus/enzimologia , Onchocerca volvulus/genética , Oncocercose/parasitologia , Polissacarídeos/química , Prostaglandina-Endoperóxido Sintases/metabolismo , Estrutura Terciária de Proteína
3.
Proc Natl Acad Sci U S A ; 113(3): E396-405, 2016 Jan 19.
Artigo em Inglês | MEDLINE | ID: mdl-26719420

RESUMO

Regulation of ion transport in plants is essential for cell function. Abiotic stress unbalances cell ion homeostasis, and plants tend to readjust it, regulating membrane transporters and channels. The plant hormone abscisic acid (ABA) and the second messenger Ca(2+) are central in such processes, as they are involved in the regulation of protein kinases and phosphatases that control ion transport activity in response to environmental stimuli. The identification and characterization of the molecular mechanisms underlying the effect of ABA and Ca(2+) signaling pathways on membrane function are central and could provide opportunities for crop improvement. The C2-domain ABA-related (CAR) family of small proteins is involved in the Ca(2+)-dependent recruitment of the pyrabactin resistance 1/PYR1-like (PYR/PYL) ABA receptors to the membrane. However, to fully understand CAR function, it is necessary to define a molecular mechanism that integrates Ca(2+) sensing, membrane interaction, and the recognition of the PYR/PYL interacting partners. We present structural and biochemical data showing that CARs are peripheral membrane proteins that functionally cluster on the membrane and generate strong positive membrane curvature in a Ca(2+)-dependent manner. These features represent a mechanism for the generation, stabilization, and/or specific recognition of membrane discontinuities. Such structures may act as signaling platforms involved in the recruitment of PYR/PYL receptors and other signaling components involved in cell responses to stress.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/metabolismo , Cálcio/metabolismo , Membrana Celular/metabolismo , Multimerização Proteica , Transdução de Sinais , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/química , Sítios de Ligação , Calorimetria , Membrana Celular/efeitos dos fármacos , Cristalografia por Raios X , Modelos Biológicos , Fenótipo , Fosfolipídeos/química , Ligação Proteica/efeitos dos fármacos , Multimerização Proteica/efeitos dos fármacos , Estrutura Secundária de Proteína , Estrutura Terciária de Proteína , Transporte Proteico/efeitos dos fármacos , Transdução de Sinais/efeitos dos fármacos , Soluções , Frações Subcelulares/efeitos dos fármacos , Frações Subcelulares/metabolismo
4.
Pestic Biochem Physiol ; 161: 61-67, 2019 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-31685198

RESUMO

Extensive use of pyrethroids for malaria control in Africa has led to widespread pyrethroid resistance in the two major African vectors of malaria An. gambiae and An. funestus. This is often associated with constitutively elevated levels of cytochrome P450s involved with pyrethroid metabolism and detoxification. P450s have the capacity to metabolise diverse substrates, which raises concerns about their potential to cause cross-resistance. A bank of seven recombinant P450s from An. gambiae (CYPs 6M2, 6P2, 6P3, 6P4, 6P5, 9J5) and An. funestus (CYP6P9a) commonly associated with pyrethroid resistance were screened against twelve insecticides representing the five major classes of insecticides recommended by WHO for malaria control; permethrin, etofenprox and bifenthrin (type I pyrethroids), deltamethrin, lambda cyhalothrin and cypermethrin (type II pyrethroids), DDT (organochlorine), bendiocarb (carbamate), malathion, pirimiphos methyl and fenitrothion (organophosphates) and pyriproxyfen (juvenile hormone analogue). DDT was not metabolised by the P450 panel, while bendiocarb was only metabolised by CYP6P3. Pyrethroids and pyriproxyfen were largely susceptible to metabolism by the P450 panel, as were organophosphates, which are activated by P450s. Primiphos-methyl is increasingly used for malaria control. Examination of the pirimiphos-methyl metabolites generated by CYP6P3 revealed both the active pirimiphos-methyl-oxon form and the inactive oxidative cleavage product 2-diethylamino-6-hydroxy-4-methylpyrimidine. The inhibition profile of CYPs 6M2, 6P2, 6P3, 6P9a and 9J5 was also examined using diethoxyfluorescein (DEF) as the probe substrate. Bendiocarb was the weakest inhibitor with IC50 > 100 µM across the P450 panel, while CYP6M2 showed strongest inhibition by malathion (IC50 0.7 µM). The results suggest that P450s present at elevated levels in two major Anopheline vectors of malaria in Africa have the capacity to metabolise a diverse range of pyrethroid and organophosphate insecticides as well as pyriproxyfen that could impact vector control.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/enzimologia , Sistema Enzimático do Citocromo P-450/metabolismo , Resistência a Inseticidas , Malária/transmissão , Mosquitos Vetores/efeitos dos fármacos , Piretrinas/farmacologia , Animais , Anopheles/classificação , Controle de Mosquitos/métodos , Mosquitos Vetores/parasitologia , Compostos Organotiofosforados/farmacologia , Especificidade da Espécie
5.
PLoS Genet ; 11(10): e1005618, 2015 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-26517127

RESUMO

Scale up of Long Lasting Insecticide Nets (LLINs) has massively contributed to reduce malaria mortality across Africa. However, resistance to pyrethroid insecticides in malaria vectors threatens its continued effectiveness. Deciphering the detailed molecular basis of such resistance and designing diagnostic tools is critical to implement suitable resistance management strategies. Here, we demonstrated that allelic variation in two cytochrome P450 genes is the most important driver of pyrethroid resistance in the major African malaria vector Anopheles funestus and detected key mutations controlling this resistance. An Africa-wide polymorphism analysis of the duplicated genes CYP6P9a and CYP6P9b revealed that both genes are directionally selected with alleles segregating according to resistance phenotypes. Modelling and docking simulations predicted that resistant alleles were better metabolizers of pyrethroids than susceptible alleles. Metabolism assays performed with recombinant enzymes of various alleles confirmed that alleles from resistant mosquitoes had significantly higher activities toward pyrethroids. Additionally, transgenic expression in Drosophila showed that flies expressing resistant alleles of both genes were significantly more resistant to pyrethroids compared with those expressing the susceptible alleles, indicating that allelic variation is the key resistance mechanism. Furthermore, site-directed mutagenesis and functional analyses demonstrated that three amino acid changes (Val109Ile, Asp335Glu and Asn384Ser) from the resistant allele of CYP6P9b were key pyrethroid resistance mutations inducing high metabolic efficiency. The detection of these first DNA markers of metabolic resistance to pyrethroids allows the design of DNA-based diagnostic tools to detect and track resistance associated with bednets scale up, which will improve the design of evidence-based resistance management strategies.


Assuntos
Anopheles/genética , Sistema Enzimático do Citocromo P-450/genética , Resistência a Inseticidas/genética , Malária/genética , África , Alelos , Animais , Animais Geneticamente Modificados , Anopheles/patogenicidade , Variação Genética , Haplótipos , Insetos Vetores/genética , Inseticidas/farmacologia , Malária/tratamento farmacológico , Malária/transmissão , Dados de Sequência Molecular , Piretrinas/farmacologia
6.
Biochem J ; 462(3): 453-63, 2014 Sep 15.
Artigo em Inglês | MEDLINE | ID: mdl-24957194

RESUMO

Protein stability is a fundamental issue in biomedical and biotechnological applications of proteins. Among these applications, gene- and enzyme-replacement strategies are promising approaches to treat inherited diseases that may benefit from protein engineering techniques, even though these beneficial effects have been largely unexplored. In the present study we apply a sequence-alignment statistics procedure (consensus-based approach) to improve the activity and stability of the human AGT (alanine-glyoxylate aminotransferase) protein, an enzyme which causes PH1 (primary hyperoxaluria type I) upon mutation. By combining only five consensus mutations, we obtain a variant (AGT-RHEAM) with largely enhanced in vitro thermal and kinetic stability, increased activity, and with no side effects on foldability and peroxisomal targeting in mammalian cells. The structure of AGT-RHEAM reveals changes at the dimer interface and improved electrostatic interactions responsible for increased kinetic stability. Consensus-based variants maintained the overall protein fold, crystallized more easily and improved the expression as soluble proteins in two different systems [AGT and CIPK24 (CBL-interacting serine/threonine-protein kinase) SOS2 (salt-overly-sensitive 2)]. Thus the consensus-based approach also emerges as a simple and generic strategy to increase the crystallization success for hard-to-get protein targets as well as to enhance protein stability and function for biomedical applications.


Assuntos
Terapia de Reposição de Enzimas/métodos , Transaminases/uso terapêutico , Animais , Células CHO , Cricetulus , Cristalização , Cristalografia por Raios X , Estabilidade Enzimática , Humanos , Hiperoxalúria Primária/genética , Hiperoxalúria Primária/terapia , Alinhamento de Sequência , Solubilidade , Transaminases/genética
7.
Plant Physiol ; 163(1): 441-55, 2013 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-23864556

RESUMO

Because abscisic acid (ABA) is recognized as the critical hormonal regulator of plant stress physiology, elucidating its signaling pathway has raised promise for application in agriculture, for instance through genetic engineering of ABA receptors. PYRABACTIN RESISTANCE1/PYR1-LIKE (PYL)/REGULATORY COMPONENTS OF ABA RECEPTORS ABA receptors interact with high affinity and inhibit clade A phosphatases type-2C (PP2Cs) in an ABA-dependent manner. We generated an allele library composed of 10,000 mutant clones of Arabidopsis (Arabidopsis thaliana) PYL4 and selected mutations that promoted ABA-independent interaction with PP2CA/ABA-HYPERSENSITIVE3. In vitro protein-protein interaction assays and size exclusion chromatography confirmed that PYL4(A194T) was able to form stable complexes with PP2CA in the absence of ABA, in contrast to PYL4. This interaction did not lead to significant inhibition of PP2CA in the absence of ABA; however, it improved ABA-dependent inhibition of PP2CA. As a result, 35S:PYL4(A194T) plants showed enhanced sensitivity to ABA-mediated inhibition of germination and seedling establishment compared with 35S:PYL4 plants. Additionally, at basal endogenous ABA levels, whole-rosette gas exchange measurements revealed reduced stomatal conductance and enhanced water use efficiency compared with nontransformed or 35S:PYL4 plants and partial up-regulation of two ABA-responsive genes. Finally, 35S:PYL4(A194T) plants showed enhanced drought and dehydration resistance compared with nontransformed or 35S:PYL4 plants. Thus, we describe a novel approach to enhance plant drought resistance through allele library generation and engineering of a PYL4 mutation that enhances interaction with PP2CA.


Assuntos
Ácido Abscísico/metabolismo , Proteínas de Arabidopsis/farmacologia , Proteínas de Arabidopsis/fisiologia , Mutação , Fosfoproteínas Fosfatases/fisiologia , Estresse Fisiológico/genética , Sequência de Aminoácidos , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Secas , Regulação da Expressão Gênica de Plantas , Dados de Sequência Molecular , Fosfoproteínas Fosfatases/genética , Fosfoproteínas Fosfatases/metabolismo , Plantas Geneticamente Modificadas/fisiologia , Mapas de Interação de Proteínas , Receptores de Superfície Celular/genética , Receptores de Superfície Celular/metabolismo , Alinhamento de Sequência , Transdução de Sinais/genética , Água/metabolismo
8.
Sci Rep ; 13(1): 14124, 2023 08 29.
Artigo em Inglês | MEDLINE | ID: mdl-37644079

RESUMO

Chlorfenapyr is a pro-insecticide increasingly used in combination with pyrethroids such as a-cypermethrin or deltamethrin in insecticide treated bednets (ITNs) to control malaria transmitted by pyrethroid-resistant mosquito populations. Chlorfenapyr requires P450 activation to produce tralopyril and other bioactive metabolites. Pyrethroid resistance is often associated with elevated levels of chemoprotective P450s with broad substrate specificity, which could influence chlorfenapyr activity. Here, we have investigated chlorfenapyr metabolism by a panel of eight P450s commonly associated with pyrethroid resistance in An. gambiae and Ae. aegypti, the major vectors of malaria and arboviruses. Chlorfenapyr was activated to tralopyril by An. gambiae CYP6P3, CYP9J5, CYP9K1 and Ae. aegypti, CYP9J32. The Kcat/KM value of 0.66 µM-1 min-1 for CYP9K1 was, 6.7 fold higher than CYP6P3 and CYP9J32 (both 0.1 µM-1 min-1) and 22-fold higher than CYP9J5 (0.03 µM-1 min-1). Further investigation of the effect of -cypermethrin equivalent to the ratios used with chlorfenapyr in bed nets (~ 1:2 molar ratio) resulted in a reduction in chlorfenapyr metabolism by CYP6P3 and CYP6K1 of 76.8% and 56.8% respectively. This research provides valuable insights into the metabolism of chlorfenapyr by mosquito P450s and highlights the need for continued investigation into effective vector control strategies.


Assuntos
Culicidae , Piretrinas , Animais , Mosquitos Vetores , Piretrinas/farmacologia
9.
J Biol Chem ; 285(9): 6371-6, 2010 Feb 26.
Artigo em Inglês | MEDLINE | ID: mdl-20056599

RESUMO

Primary hyperoxaluria type 1 is a rare autosomal recessive disease caused by mutations in the alanine glyoxylate aminotransferase gene (AGXT). We have previously shown that P11L and I340M polymorphisms together with I244T mutation (AGXT-LTM) represent a conformational disease that could be amenable to pharmacological intervention. Thus, the study of the folding mechanism of AGXT is crucial to understand the molecular basis of the disease. Here, we provide biochemical and structural data showing that AGXT-LTM is able to form non-native folding intermediates. The three-dimensional structure of a complex between the bacterial chaperonin GroEL and a folding intermediate of AGXT-LTM mutant has been solved by cryoelectron microscopy. The electron density map shows the protein substrate in a non-native extended conformation that crosses the GroEL central cavity. Addition of ATP to the complex induces conformational changes on the chaperonin and the internalization of the protein substrate into the folding cavity. The structure provides a three-dimensional picture of an in vivo early ATP-dependent step of the folding reaction cycle of the chaperonin and supports a GroEL functional model in which the chaperonin promotes folding of the AGXT-LTM mutant protein through forced unfolding mechanism.


Assuntos
Chaperonina 60/química , Dobramento de Proteína , Transaminases/química , Trifosfato de Adenosina/farmacologia , Proteínas de Bactérias , Chaperoninas/química , Microscopia Crioeletrônica , Humanos , Hiperoxalúria Primária/enzimologia , Hiperoxalúria Primária/genética , Mutação de Sentido Incorreto , Polimorfismo Genético , Ligação Proteica , Conformação Proteica , Transaminases/genética
10.
Artigo em Inglês | MEDLINE | ID: mdl-21393844

RESUMO

The SnRK2.6 (SNF1-related kinase 2.6) gene from Arabidopsis thaliana encodes the serine/threonine protein kinase SnRK2.6/OST1 (OPEN STOMATA 1). It plays a central role in the drought-tolerance mechanism. OST1 is in fact the main positive effector in the hydric stress response. The SnRK2.6 gene was cloned into the pGEX4T1 plasmid, mutated and expressed in Escherichia coli, allowing purification to homogeneity in two chromatographic steps. Various OST1 mutants yielded crystals using vapour-diffusion techniques, but only one mutant showed a good diffraction pattern. Its crystals diffracted to 2.8 Šresolution and belonged to space group P222(1), with unit-cell parameters a=77.7, b=99.4, c=108.4 Å. A promising molecular-replacement solution was found using the structure of the kinase domain of the yeast AMP-activated protein kinase SNF1 (PDB entry 3hyh) as the search model.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/isolamento & purificação , Arabidopsis/química , Proteínas Quinases/química , Proteínas Quinases/genética , Proteínas Quinases/isolamento & purificação , Clonagem Molecular , Cristalização , Cristalografia por Raios X , Dados de Sequência Molecular , Mutagênese Sítio-Dirigida , Mutação , Difração de Raios X
12.
Insect Biochem Mol Biol ; 98: 25-33, 2018 07.
Artigo em Inglês | MEDLINE | ID: mdl-29729387

RESUMO

The mosquito Anopheles gambiae is the principal vector for malaria in sub-Saharan Africa. The ability of A. gambiae to transmit malaria is strictly related to blood feeding and digestion, which releases nutrients for oogenesis, as well as substantial amounts of highly toxic free heme. Heme degradation by heme oxygenase (HO) is a common protective mechanism, and a gene for HO exists in the An. gambiae genome HO (AgHO), although it has yet to be functionally examined. Here, we have cloned and expressed An. gambiae HO (AgHO) in E. coli. Purified recombinant AgHO bound hemin stoichiometrically to form a hemin-enzyme complex similar to other HOs, with a KD of 3.9 ±â€¯0.6 µM; comparable to mammalian and bacterial HOs, but 7-fold lower than that of Drosophila melanogaster HO. AgHO also degraded hemin to biliverdin and released CO and iron in the presence of NADPH cytochrome P450 oxidoreductase (CPR). Optimal AgHO activity was observed at 27.5 °C and pH 7.5. To investigate effects of AgHO inhibition, adult female A. gambiae were fed heme analogues Sn- and Zn-protoporphyrins (SnPP and ZnPP), known to inhibit HO. These led to a dose dependent decrease in oviposition. Cu-protoporphyrin (CuPP), which does not inhibit HO had no effect. These results demonstrate that AgHO is a catalytically active HO and that it may play a key role in egg production in mosquitoes. It also presents a potential target for the development of compounds aimed at sterilising mosquitoes for vector control.


Assuntos
Anopheles/enzimologia , Heme Oxigenase (Desciclizante)/metabolismo , Sequência de Aminoácidos , Animais , Escherichia coli , Feminino , Ferro/metabolismo , Oviposição , Protoporfirinas , Análise de Sequência de DNA
13.
Insect Biochem Mol Biol ; 78: 50-57, 2016 11.
Artigo em Inglês | MEDLINE | ID: mdl-27613592

RESUMO

Pyrethroid resistance is widespread in the malaria vector Anopheles gambiae leading to concerns about the future efficacy of bednets with pyrethroids as the sole active ingredient. The incorporation of pyriproxyfen (PPF), a juvenile hormone analogue, into pyrethroid treated bednets is being trialed in Africa. Pyrethroid resistance is commonly associated with elevated levels of P450 expression including CYPs 6M2, 6P2, 6P3, 6P4, 6P5, 6Z2 and 9J5. Having expressed these P450s in E. coli we find all are capable of metabolizing PPF. Inhibition of these P450s by permethrin, deltamethrin and PPF was also examined. Deltamethrin and permethrin were moderate inhibitors (IC50 1-10 µM) of diethoxyfluorescein (DEF) activity for all P450s apart from CYP6Z2 (IC50 > 10 µM), while PPF displayed weaker inhibition of all P450s (IC50 > 10 µM) except CYP's 6Z2 and 6P2 (IC50 1-10 µM). We found evidence of low levels of cross resistance between PPF and other insecticide classes by comparing the efficacy of PPF in inhibiting metamorphosis and inducing female sterility in an insecticide susceptible strain of An. gambiae and a multiple resistant strain from Cote d'Ivoire.


Assuntos
Anopheles/efeitos dos fármacos , Anopheles/fisiologia , Sistema Enzimático do Citocromo P-450/metabolismo , Escherichia coli/genética , Proteínas de Insetos/metabolismo , Resistência a Inseticidas , Inseticidas/farmacologia , Piridinas/farmacologia , Animais , Côte d'Ivoire , Feminino , Metamorfose Biológica , Organismos Geneticamente Modificados , Reprodução
14.
PLoS Negl Trop Dis ; 8(3): e2743, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-24651719

RESUMO

BACKGROUND: Thailand is currently experiencing one of its worst dengue outbreaks in decades. As in most countries where this disease is endemic, dengue control in Thailand is largely reliant on the use of insecticides targeting both immature and adult stages of the Aedes mosquito, with the organophosphate insecticide, temephos, being the insecticide of choice for attacking the mosquito larvae. Resistance to temephos was first detected in Aedes aegypti larvae in Thailand approximately 25 years ago but the mechanism responsible for this resistance has not been determined. PRINCIPAL FINDINGS: Bioassays on Ae. aegypti larvae from Thailand detected temephos resistance ratios ranging from 3.5 fold in Chiang Mai to nearly 10 fold in Nakhon Sawan (NS) province. Synergist and biochemical assays suggested a role for increased carboxylesterase (CCE) activities in conferring temephos resistance in the NS population and microarray analysis revealed that the CCE gene, CCEae3a, was upregulated more than 60 fold in the NS population compared to the susceptible population. Upregulation of CCEae3a was shown to be partially due to gene duplication. Another CCE gene, CCEae6a, was also highly regulated in both comparisons. Sequencing and in silico structure prediction of CCEae3a showed that several amino acid polymorphisms in the NS population may also play a role in the increased resistance phenotype. SIGNIFICANCE: Carboxylesterases have previously been implicated in conferring temephos resistance in Ae aegypti but the specific member(s) of this family responsible for this phenotype have not been identified. The identification of a strong candidate is an important step in the development of new molecular diagnostic tools for management of temephos resistant populations and thus improved control of dengue.


Assuntos
Aedes/efeitos dos fármacos , Aedes/enzimologia , Carboxilesterase/genética , Carboxilesterase/metabolismo , Resistência a Inseticidas , Inseticidas/farmacologia , Temefós/farmacologia , Aedes/genética , Animais , Bioensaio , Dengue/epidemiologia , Dengue/transmissão , Duplicação Gênica , Perfilação da Expressão Gênica , Insetos Vetores , Análise em Microsséries , Polimorfismo Genético , Análise de Sequência de DNA , Tailândia/epidemiologia , Regulação para Cima
15.
Genome Biol ; 15(2): R27, 2014 Feb 25.
Artigo em Inglês | MEDLINE | ID: mdl-24565444

RESUMO

BACKGROUND: Metabolic resistance to insecticides is the biggest threat to the continued effectiveness of malaria vector control. However, its underlying molecular basis, crucial for successful resistance management, remains poorly characterized. RESULTS: Here, we demonstrate that the single amino acid change L119F in an upregulated glutathione S-transferase gene, GSTe2, confers high levels of metabolic resistance to DDT in the malaria vector Anopheles funestus. Genome-wide transcription analysis revealed that GSTe2 was the most over-expressed detoxification gene in DDT and permethrin-resistant mosquitoes from Benin. Transgenic expression of GSTe2 in Drosophila melanogaster demonstrated that over-transcription of this gene alone confers DDT resistance and cross-resistance to pyrethroids. Analysis of GSTe2 polymorphism established that the point mutation is tightly associated with metabolic resistance to DDT and its geographical distribution strongly correlates with DDT resistance patterns across Africa. Functional characterization of recombinant GSTe2 further supports the role of the L119F mutation, with the resistant allele being more efficient at metabolizing DDT than the susceptible one. Importantly, we also show that GSTe2 directly metabolizes the pyrethroid permethrin. Structural analysis reveals that the mutation confers resistance by enlarging the GSTe2 DDT-binding cavity, leading to increased DDT access and metabolism. Furthermore, we show that GSTe2 is under strong directional selection in resistant populations, and a restriction of gene flow is observed between African regions, enabling the prediction of the future spread of this resistance. CONCLUSIONS: This first DNA-based metabolic resistance marker in mosquitoes provides an essential tool to track the evolution of resistance and to design suitable resistance management strategies.


Assuntos
Anopheles/genética , Glutationa Transferase/genética , Resistência a Inseticidas/genética , Malária/genética , África , Alelos , Animais , Anopheles/efeitos dos fármacos , Cristalografia por Raios X , DDT/toxicidade , Glutationa Transferase/química , Humanos , Insetos Vetores/efeitos dos fármacos , Insetos Vetores/genética , Malária/transmissão , Dados de Sequência Molecular , Mutação , Piretrinas/metabolismo
16.
PLoS One ; 8(8): e71963, 2013.
Artigo em Inglês | MEDLINE | ID: mdl-24205397

RESUMO

Primary hyperoxaluria type I (PH1) is a conformational disease which result in the loss of alanine:glyoxylate aminotransferase (AGT) function. The study of AGT has important implications for protein folding and trafficking because PH1 mutants may cause protein aggregation and mitochondrial mistargeting. We herein describe a multidisciplinary study aimed to understand the molecular basis of protein aggregation and mistargeting in PH1 by studying twelve AGT variants. Expression studies in cell cultures reveal strong protein folding defects in PH1 causing mutants leading to enhanced aggregation, and in two cases, mitochondrial mistargeting. Immunoprecipitation studies in a cell-free system reveal that most mutants enhance the interactions with Hsc70 chaperones along their folding process, while in vitro binding experiments show no changes in the interaction of folded AGT dimers with the peroxisomal receptor Pex5p. Thermal denaturation studies by calorimetry support that PH1 causing mutants often kinetically destabilize the folded apo-protein through significant changes in the denaturation free energy barrier, whereas coenzyme binding overcomes this destabilization. Modeling of the mutations on a 1.9 Å crystal structure suggests that PH1 causing mutants perturb locally the native structure. Our work support that a misbalance between denaturation energetics and interactions with chaperones underlie aggregation and mistargeting in PH1, suggesting that native state stabilizers and protein homeostasis modulators are potential drugs to restore the complex and delicate balance of AGT protein homeostasis in PH1.


Assuntos
Proteínas de Choque Térmico HSC70/metabolismo , Hiperoxalúria Primária/genética , Desnaturação Proteica , Transaminases/genética , Transaminases/metabolismo , Animais , Células CHO , Cricetulus , Humanos , Hiperoxalúria Primária/metabolismo , Modelos Moleculares , Mutação , Conformação Proteica , Mapeamento de Interação de Proteínas , Multimerização Proteica , Estabilidade Proteica , Transaminases/química
18.
J Mol Biol ; 414(1): 135-44, 2011 Nov 18.
Artigo em Inglês | MEDLINE | ID: mdl-21983340

RESUMO

SnRK [SNF1 (sucrose non-fermenting-1)-related protein kinase] 2.6 [open stomata 1 (OST1)] is well characterized at molecular and physiological levels to control stomata closure in response to water-deficit stress. OST1 is a member of a family of 10 protein kinases from Arabidopsis thaliana (SnRK2) that integrates abscisic acid (ABA)-dependent and ABA-independent signals to coordinate the cell response to osmotic stress. A subgroup of protein phosphatases type 2C binds OST1 and keeps the kinase dephosphorylated and inactive. Activation of OST1 relies on the ABA-dependent inhibition of the protein phosphatases type 2C and the subsequent self-phosphorylation of the kinase. The OST1 ABA-independent activation depends on a short sequence motif that is conserved among all the members of the SnRK2 family. However, little is known about the molecular mechanism underlying this regulation. The crystallographic structure of OST1 shows that ABA-independent regulation motif stabilizes the conformation of the kinase catalytically essential α C helix, and it provides the basis of the ABA-independent regulation mechanism for the SnRK2 family of protein kinases.


Assuntos
Proteínas de Arabidopsis/química , Proteínas de Arabidopsis/metabolismo , Arabidopsis/enzimologia , Regulação da Expressão Gênica de Plantas , Osmose , Proteínas Quinases/química , Proteínas Quinases/metabolismo , Ácido Abscísico/farmacologia , Proteínas de Arabidopsis/genética , Dicroísmo Circular , Cristalografia por Raios X , Modelos Moleculares , Mutação/genética , Fosfoproteínas Fosfatases/metabolismo , Fosforilação , Conformação Proteica , Proteínas Quinases/genética , Proteína Fosfatase 2C , Transdução de Sinais , Espectrometria de Massas por Ionização e Dessorção a Laser Assistida por Matriz , Ultracentrifugação
19.
Chem Commun (Camb) ; 47(17): 5043-5, 2011 May 07.
Artigo em Inglês | MEDLINE | ID: mdl-21431113

RESUMO

The Sandmeyer reaction of differently C-2 substituted N-(prop-2-yn-1-ylamino)pyridines is an efficient, mild, new and practical method for the stereospecific synthesis of (E)-exo-halomethylene bicyclic pyridones bearing the imidazo[1,2-a]pyridine heterocyclic ring system.


Assuntos
Compostos Bicíclicos Heterocíclicos com Pontes/síntese química , Imidazóis/síntese química , Piridinas/síntese química , Aminas/química , Produtos Biológicos/síntese química , Ciclização , Piridonas/química , Estereoisomerismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA