Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 23
Filtrar
1.
J Cell Physiol ; 228(2): 402-7, 2013 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22740316

RESUMO

Mice lacking the renal epithelial Ca(2+) channel TRPV5 (TRPV5(-/-)) display impaired renal Ca(2+) reabsorption, hypercalciuria, and intestinal Ca(2+) hyperabsorption, due to secondary hypervitaminosis D. Using these mice, we previously demonstrated that ZK191784 acts as an intestine-specific 1,25(OH)(2) D(3) antagonist without affecting serum calcium levels. On the other hand, it acted as an agonist in the kidney and the effects of ZK191784 on bone were ambiguous. The present study was undertaken to further evaluate the effect of the vitamin D receptor antagonist on murine bone in mice lacking TRPV5. Eight-week-old female Trpv5(+/+) and Trpv5(-/-) mice were treated for 4 weeks with or without 50 µg/kg/day ZK191784. Quantitative backscattered electron imaging showed that the reduced bone matrix mineralization found in femoral bones of Trpv5(-/-) mice was partially but significantly restored upon ZK191784 treatment, just as we observed for trabecular bone thickness. This supports the significance of 1,25(OH)(2) D(3) and optimal control of Ca(2+) homeostasis for bone formation and matrix mineralization. Restoration also took place at the bone gene expression level, where 1α-hydroxylase (Cyp27b1) mRNA in femurs from ZK-treated Trpv5(-/-) mice was upregulated compared to control levels. The downregulated 24-hydroxylase (Cyp24a1) gene expression in femoral bone indicated local vitamin D resistance in the mice treated with ZK191784. Phosphate homeostasis was unaffected between the groups as shown by unaltered serum PO(4)(3-) and fibroblast growth factor (FGF) 23 as well as Fgf23 mRNA expression in bone. In conclusion, circulating 1,25(OH)(2) D(3) is important for optimal control of Ca(2+) homeostasis but also for controlled bone formation and matrix mineralization.


Assuntos
Matriz Óssea/efeitos dos fármacos , Calcificação Fisiológica/efeitos dos fármacos , Calcitriol/análogos & derivados , Canais de Cálcio/deficiência , Canais de Cátion TRPV/deficiência , Vitamina D/análogos & derivados , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/biossíntese , Animais , Calcitriol/farmacologia , Cálcio/metabolismo , Colecalciferol/sangue , Colecalciferol/metabolismo , Feminino , Fêmur/efeitos dos fármacos , Fator de Crescimento de Fibroblastos 23 , Fatores de Crescimento de Fibroblastos/biossíntese , Regulação da Expressão Gênica/efeitos dos fármacos , Homeostase/efeitos dos fármacos , Camundongos , Fosfatos/sangue , Esteroide Hidroxilases/biossíntese , Vitamina D/antagonistas & inibidores , Vitamina D3 24-Hidroxilase
2.
Proc Natl Acad Sci U S A ; 107(46): 19679-84, 2010 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-21041668

RESUMO

Adhesive interactions of leukocytes and endothelial cells initiate leukocyte migration to inflamed tissue and are important for immune surveillance. Acute and chronic inflammatory diseases show a dysregulated immune response and result in a massive efflux of leukocytes that contributes to further tissue damage. Therefore, targeting leukocyte trafficking may provide a potent form of anti-inflammatory therapy. Leukocyte migration is initiated by interactions of the cell adhesion molecules E-, L-, and P-selectin and their corresponding carbohydrate ligands. Compounds that efficiently address these interactions are therefore of high therapeutic interest. Based on this rationale we investigated synthetic dendritic polyglycerol sulfates (dPGS) as macromolecular inhibitors that operate via a multivalent binding mechanism mimicking naturally occurring ligands. dPGS inhibited both leukocytic L-selectin and endothelial P-selectin with high efficacy. Size and degree of sulfation of the polymer core determined selectin binding affinity. Administration of dPGS in a contact dermatitis mouse model dampened leukocyte extravasation as effectively as glucocorticoids did and edema formation was significantly reduced. In addition, dPGS interacted with the complement factors C3 and C5 as was shown in vitro and reduced C5a levels in a mouse model of complement activation. Thus, dPGS represent an innovative class of a fully synthetic polymer therapeutics that may be used for the treatment of inflammatory diseases.


Assuntos
Anti-Inflamatórios/uso terapêutico , Dendrímeros/uso terapêutico , Glicerol/uso terapêutico , Inflamação/tratamento farmacológico , Polímeros/uso terapêutico , Sulfatos/uso terapêutico , Anafilatoxinas/biossíntese , Animais , Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Adesão Celular/efeitos dos fármacos , Linhagem Celular , Movimento Celular/efeitos dos fármacos , Dendrímeros/química , Dendrímeros/farmacologia , Dermatite de Contato/complicações , Dermatite de Contato/tratamento farmacológico , Dermatite de Contato/imunologia , Dermatite de Contato/patologia , Feminino , Glicerol/química , Glicerol/farmacologia , Humanos , Inflamação/complicações , Inflamação/patologia , Selectina L/metabolismo , Leucócitos/citologia , Leucócitos/efeitos dos fármacos , Camundongos , Modelos Imunológicos , Selectina-P/metabolismo , Polímeros/química , Polímeros/farmacologia , Ligação Proteica/efeitos dos fármacos , Sulfatos/química , Sulfatos/farmacologia
3.
Exp Dermatol ; 20(1): 41-7, 2011 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-21158938

RESUMO

T-cell-mediated processes play an essential role in the pathogenesis of several inflammatory skin diseases such as atopic dermatitis, allergic contact dermatitis and psoriasis. The aim of this study was to investigate the role of the IL-2-inducible tyrosine kinase (Itk), an enzyme acting downstream of the T-cell receptor (TCR), in T-cell-dependent skin inflammation using three approaches. Itk knockout mice display significantly reduced inflammatory symptoms in mouse models of acute and subacute contact hypersensitivity (CHS) reactions. Systemic administration of a novel small molecule Itk inhibitor, Compound 44, created by chemical optimization of an initial high-throughput screening hit, inhibited Itk's activity with an IC50 in the nanomolar range. Compound 44 substantially reduced proinflammatory immune responses in vitro and in vivo after systemic administration in two acute CHS models. In addition, our data reveal that human Itk, comparable to its murine homologue, is expressed mainly in T cells and is increased in lesional skin from patients with atopic dermatitis and allergic contact dermatitis. Finally, silencing of Itk by RNA interference in primary human T cells efficiently blocks TCR-induced lymphokine secretion. In conclusion, Itk represents an interesting new target for the therapy of T-cell-mediated inflammatory skin diseases.


Assuntos
Dermatite/tratamento farmacológico , Inibidores de Proteínas Quinases/farmacologia , Proteínas Tirosina Quinases/antagonistas & inibidores , Animais , Sequência de Bases , Dermatite/enzimologia , Dermatite/imunologia , Dermatite Alérgica de Contato/tratamento farmacológico , Dermatite Alérgica de Contato/enzimologia , Dermatite Alérgica de Contato/imunologia , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/enzimologia , Dermatite Atópica/imunologia , Dinitroclorobenzeno/imunologia , Dinitroclorobenzeno/toxicidade , Modelos Animais de Doenças , Avaliação Pré-Clínica de Medicamentos , Feminino , Perfilação da Expressão Gênica , Humanos , Técnicas In Vitro , Tecido Linfoide/enzimologia , Tecido Linfoide/imunologia , Camundongos , Camundongos Knockout , Proteínas Tirosina Quinases/deficiência , Proteínas Tirosina Quinases/genética , Psoríase/tratamento farmacológico , Psoríase/enzimologia , Psoríase/imunologia , Interferência de RNA , RNA Mensageiro/genética , RNA Mensageiro/metabolismo , RNA Interferente Pequeno/genética , Proteínas Recombinantes de Fusão/antagonistas & inibidores , Proteínas Recombinantes de Fusão/genética , Linfócitos T/efeitos dos fármacos , Linfócitos T/enzimologia , Linfócitos T/imunologia , Regulação para Cima
4.
J Clin Invest ; 117(3): 803-11, 2007 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-17290304

RESUMO

An essential element of the innate immune response to injury is the capacity to recognize microbial invasion and stimulate production of antimicrobial peptides. We investigated how this process is controlled in the epidermis. Keratinocytes surrounding a wound increased expression of the genes coding for the microbial pattern recognition receptors CD14 and TLR2, complementing an increase in cathelicidin antimicrobial peptide expression. These genes were induced by 1,25(OH)2 vitamin D3 (1,25D3; its active form), suggesting a role for vitamin D3 in this process. How 1,25D3 could participate in the injury response was explained by findings that the levels of CYP27B1, which converts 25OH vitamin D3 (25D3) to active 1,25D3, were increased in wounds and induced in keratinocytes in response to TGF-beta1. Blocking the vitamin D receptor, inhibiting CYP27B1, or limiting 25D3 availability prevented TGF-beta1 from inducing cathelicidin, CD14, or TLR2 in human keratinocytes, while CYP27B1-deficient mice failed to increase CD14 expression following wounding. The functional consequence of these observations was confirmed by demonstrating that 1,25D3 enabled keratinocytes to recognize microbial components through TLR2 and respond by cathelicidin production. Thus, we demonstrate what we believe to be a previously unexpected role for vitamin D3 in innate immunity, enabling keratinocytes to recognize and respond to microbes and to protect wounds against infection.


Assuntos
Peptídeos Catiônicos Antimicrobianos/metabolismo , Epiderme/imunologia , Receptor 2 Toll-Like/genética , Vitamina D/fisiologia , Cicatrização/imunologia , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/antagonistas & inibidores , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Calcitriol/farmacologia , Células Epidérmicas , Epiderme/química , Expressão Gênica/efeitos dos fármacos , Humanos , Imunidade Inata/genética , Queratinócitos/imunologia , Receptores de Lipopolissacarídeos/genética , Camundongos , Camundongos Mutantes , Receptores de Calcitriol/antagonistas & inibidores , Receptor 2 Toll-Like/análise , Receptor 2 Toll-Like/metabolismo , Fator de Crescimento Transformador beta1/farmacologia , Cicatrização/efeitos dos fármacos , Cicatrização/genética , Catelicidinas
5.
Exp Dermatol ; 18(7): 619-27, 2009 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-19239489

RESUMO

The biologically active metabolite of vitamin D3, 1alpha,25-dihydroxyvitamin D3, has potent immunomodulatory activity; however, its clinical use is limited because of its hypercalcaemic activity in anti-inflammatory active doses. Here, we present ZK203278, a novel, structurally different vitamin D3 analogue with profound immunomodulatory activities. It potently inhibits lymphocyte proliferation in the mixed lymphocyte reaction, and release of cytokines that are central in inflammation, such as TNFalpha and IL-12 in the low nanomolar range. Similarly, expression of cell-surface molecules involved in cell adhesion and antigen presentation, e.g. to T cells, is down-regulated on human monocytes by low nanomolar concentrations of ZK203278. Potent anti-inflammatory activity has been demonstrated also in vivo in rodent disease models. ZK203278 inhibited allergic contact dermatitis in rodents after oral administration in doses approximately two orders of magnitude below the hypercalcaemic threshold dose. Moreover, ZK203278 significantly prolonged skin allograft survival in rats in well-tolerated doses. Altogether ZK203278, in contrast to 1alpha,25-dihydroxyvitamin D3, exerts considerable immunomodulatory activity at non-hypercalcaemic dosages and may have therapeutic potential for immune disorders or transplant rejection.


Assuntos
Dermatite de Contato/imunologia , Fatores Imunológicos/farmacologia , Transplante de Pele/imunologia , Pele/efeitos dos fármacos , Pele/imunologia , Vitamina D/análogos & derivados , Animais , Cálcio/metabolismo , Células Cultivadas , Dinitrofluorbenzeno/efeitos adversos , Modelos Animais de Doenças , Feminino , Rejeição de Enxerto/imunologia , Antígenos HLA-DR/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Leucócitos Mononucleares/citologia , Leucócitos Mononucleares/efeitos dos fármacos , Leucócitos Mononucleares/metabolismo , Masculino , Camundongos , Camundongos Endogâmicos , Modelos Animais , Ratos , Ratos Endogâmicos Lew , Ratos Wistar , Vitamina D/farmacologia
6.
Cell Commun Signal ; 6: 3, 2008 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-18684324

RESUMO

BACKGROUND: T cells play a central role in many inflammatory diseases, hence the identification and validation of T cell-specific target genes will increase the understanding of T cell function in pathologic inflammatory situations. RNA interference (RNAi), with its ability to induce specific gene silencing in mammalian cells, represents a powerful technology to investigate and validate the function of pharmaceutical target genes in vitro and in vivo. The aim of the present study was to systematically explore RNAi-mediated gene-silencing of known T cell-specific model signaling molecules in primary murine T cells in vitro and in vivo. RESULTS: We demonstrate that siRNA delivery and subsequent silencing of T cell specific genes is substantially increased, if murine T cells were activated prior siRNA transfection. Silencing of ZAP70, p56Lck as well as PLC-gamma1 protein expression resulted in impaired function of T cells in vitro. Furthermore, delayed type hypersensitivity (DTH) was ameliorated in vivo after adoptive transfer of ZAP70-silenced T cells. CONCLUSION: The combination of RNAi-mediated gene silencing and adoptive transfer of gene-silenced T cells, thus, may allow the identification and analysis of T cell-specific targets for therapeutic intervention. Additionally, this model system may represent an alternative to conventional time consuming and cost intensive gene targeting approaches.

7.
FASEB J ; 20(12): 2171-3, 2006 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-17012263

RESUMO

Vitamin D [1,25(OH)2D3] plays a crucial role in Ca2+ homeostasis by stimulating Ca2+ (re)absorption and bone turnover. The 1,25(OH)2D3 analog ZK191784 was recently developed to dissociate the therapeutic immunomodulatory activity from the hypercalcemic side effects of 1,25(OH)2D3 and contains a structurally modified side chain characterized by a 22,23-double bond, 24R-hydroxy group, 25-cyclopropyl ring, and 5-butyloxazole unit. We investigated the effect of ZK191784 on Ca2+ homeostasis and the regulation of Ca2+ transport proteins in wild-type (WT) mice and mice lacking the renal epithelial Ca2+ channel TRPV5 (TRPV5-/-). The latter display hypercalciuria, hypervitaminosis D, increased intestinal expression of the epithelial Ca2+ channel TRPV6, the Ca2+-binding protein calbindin-D(9K), and intestinal Ca2+ hyperabsorption. ZK191784 normalized the Ca2+ hyperabsorption and the expression of intestinal Ca2+ transport proteins in TRPV5-/- mice. Furthermore, the compound decreased intestinal Ca2+ absorption in WT mice and reduced 1,25(OH)2D3-dependent 45Ca2+ uptake by Caco-2 cells, substantiating a 1,25(OH)2D3-antagonistic action of ZK191784 in the intestine. ZK191784 increased renal TRPV5 and calbindin-D(28K) expression and decreased urine Ca2+ excretion in WT mice. Both 1,25(OH)2D3 and ZK191784 enhanced transcellular Ca2+ transport in primary cultures of rabbit connecting tubules and cortical collecting ducts, indicating a 1,25(OH)2D3-agonistic effect in kidney. ZK191784 enhanced bone TRPV6 mRNA levels and 1,25(OH)2D3 as well as ZK191784 stimulated secretion of the bone formation marker osteocalcin in rat osteosarcoma cells, albeit to a different extent. In conclusion, ZK191784 is a synthetic 1,25(OH)2D3 ligand displaying a unique tissue-specific profile when administered in vivo. Because ZK191784 acts as an intestine-specific 1,25(OH)2D3 antagonist, this compound will be associated with less hypercalcemic side effects compared with the 1,25(OH)2D3 analogs currently used in clinical practice.


Assuntos
Calcitriol/análogos & derivados , Canais de Cálcio/metabolismo , Cálcio/metabolismo , Homeostase/efeitos dos fármacos , Mucosa Intestinal/metabolismo , Vitamina D/antagonistas & inibidores , Animais , Calcitriol/administração & dosagem , Calcitriol/farmacocinética , Calcitriol/farmacologia , Canais de Cálcio/deficiência , Canais de Cálcio/fisiologia , Absorção Intestinal , Camundongos , Camundongos Knockout , Especificidade de Órgãos , Coelhos , Canais de Cátion TRPV/deficiência , Canais de Cátion TRPV/fisiologia
8.
Mol Endocrinol ; 20(12): 3093-104, 2006 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-16901972

RESUMO

Although the main role of 1alpha,25-dihydroxyvitamin D(3) [1,25-(OH)(2)D(3)] is to regulate calcium homeostasis, the valuable therapeutic applications of this compound have led to the search of new 1,25-(OH)(2)D(3)-vitamin D receptor (VDR) ligands with less side effects. In this work we have characterized seven 1,25-(OH)(2)D(3) derivatives (ZK136607, ZK161422, ZK157202, ZK159222, ZK168492, ZK191732, and ZK168289). ZK157202 is an agonist that gives a pattern similar to that of 1,25-(OH)(2)D(3) or ZK161422 in limited trypsin digestion assays, is able to recruit p160 and VDR-interacting protein 205 coactivators, is as potent as 1,25-(OH)(2)D(3) to stimulate vitamin D response element-dependent transcription in HeLa cells, and acts as a superagonist in human embryonic kidney 293T cells. This compound is also more potent than the natural ligand to transrepress the activation of the retinoic acid receptor beta2 promoter by retinoic acid and the response of the collagenase promoter to 4alpha-12-O-tetradecanoylphorbol 13-acetate. ZK136607, ZK168492, ZK191732, and ZK168289 have a profile similar to that of the partial antagonist ZK159222. They induce an antagonistic-type proteolytic pattern, do not recruit classical coactivators, and have little transactivation potency. However, they act in a cell context-dependent manner because they lack activity in HeLa cells while presenting some agonistic activity in human embryonic kidney 293T cells, or vice versa. Furthermore, some of these compounds have a dissociated activity: they cannot transactivate but they are as potent as 1,25-(OH)(2)D(3) in transrepression assays. Together our results demonstrate the existence of novel VDR ligands with variable biological functions and dissociated activity. They should represent useful tools for studying VDR function and could have therapeutic utility.


Assuntos
Calcitriol/análogos & derivados , Receptores de Calcitriol/agonistas , Elemento de Resposta à Vitamina D/efeitos dos fármacos , Bioensaio , Células Cultivadas , Colagenases/genética , Genes Reporter , Humanos , Ligantes , Regiões Promotoras Genéticas/efeitos dos fármacos , Conformação Proteica , Receptores de Calcitriol/química , Ativação Transcricional
9.
Biochim Biophys Acta ; 1737(1): 16-26, 2005 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-16236546

RESUMO

Members of the steroid receptor superfamily are known to alter the transcription of apolipoprotein AI (apo AI), the major apoprotein of high-density lipoprotein (HDL). To assess the role of vitamin D receptor (VDR) in apo AI gene expression, we investigated the effect of 1alpha, 25-dihydroxycholecalciferol (1, 25-(OH)2 D3) as well as the vitamin D antagonist ZK-191784 (ZK), on apo AI gene expression and promoter activity in the human hepatoma cell line HepG2. Apo AI secretion and mRNA levels were both suppressed in a dose-dependent manner in HepG2 cells treated 1, 25-(OH)2 D3. This was accompanied by a similar decrease in apo AI promoter activity. Mapping of the vitamin D response element showed that suppression required a region of the apo AI gene promoter identified previously to contain site A. However, vitamin D treatment had no effect on nuclear factor binding to site A of the apo AI promoter. Treatment with vitamin D receptor antagonist ZK inhibited the ability of 1, 25-(OH)2 D3 to repress apo AI promoter activity, while higher doses of ZK increased apo AI promoter activity. ZK did not alter estradiol stimulated apo AI promoter activity. The VDR antisense ODN had no effect on apo AI promoter activity in control cells, however, it reversed the repression normally seen in cells treated with 1, 25-(OH)2D3. It is concluded that 1, 25-(OH)2 D3 suppresses apo A1 gene expression at the transcriptional level, possibly by altering coactivators or corepressors. This effect requires the VDR as well as a vitamin D response element in the apo AI promoter.


Assuntos
Apolipoproteína A-I/biossíntese , Calcitriol/farmacologia , Acetiltransferases/biossíntese , Apolipoproteína A-I/genética , Calcitriol/análogos & derivados , Calcitriol/antagonistas & inibidores , Linhagem Celular Tumoral , Estradiol/farmacologia , Regulação da Expressão Gênica/efeitos dos fármacos , Histona Acetiltransferases , Humanos , Neoplasias Hepáticas , Coativador 3 de Receptor Nuclear , Oligodesoxirribonucleotídeos Antissenso/farmacologia , Proteínas Oncogênicas/biossíntese , Regiões Promotoras Genéticas/efeitos dos fármacos , Receptores de Calcitriol/efeitos dos fármacos , Receptores de Calcitriol/genética , Receptores X de Retinoides/biossíntese , Transativadores/biossíntese , Elemento de Resposta à Vitamina D/genética
10.
Immunol Lett ; 105(1): 3-5, 2006 May 15.
Artigo em Inglês | MEDLINE | ID: mdl-16580735

RESUMO

This international workshop on key signalling molecules in lymphocyte activation and immune regulation was held in Grossziethen, Germany from November 02-04, 2005 and brought together molecular, cellular, and clinical immunologists whose common goal is to develop ways of manipulating the immune response in order to avert T cell effector functions that are of significant relevance for pathogenesis in different diseases, including dermatological (psoriasis, atopic dermatitis and allergic contact allergy) and other indications (e.g. asthma, rheumatoid arthritis, multiple sclerosis and transplant rejection).


Assuntos
Proteínas Quinases/imunologia , Linfócitos T/enzimologia , Linfócitos T/imunologia , Animais , Humanos , Ativação Linfocitária , Camundongos , Modelos Imunológicos , Transdução de Sinais , Linfócitos T/efeitos dos fármacos
11.
J Invest Dermatol ; 119(6): 1434-42, 2002 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-12485451

RESUMO

1Alpha,25-dihydroxyvitamin D3, the biologically active form of vitamin D3, is a potent immunomodulatory molecule; however, its clinical use as an immunosuppressant is limited due to its strong effects on calcium homeostasis and the risk of associated side-effects. Here, we present a representative of a novel class of vitamin D analogs that exhibits potent immunosuppressive activity in a murine model of contact hypersensitivity when applied systemically and is efficacious also at nonhypercalcemic dosages. In vitro analysis revealed a binding affinity of ZK 191784 to the vitamin D receptor comparable with 1,25-dihydroxyvitamin D3. This compound inhibits lymphocyte proliferation and secretion of tumor necrosis factor alpha and interleukin-12 in monocytes in a concentration-dependent manner, but with reduced potency and efficacy than 1,25-dihydroxy-vitamin D3. Treatment of human monocytes with this analog significantly reduces expression of major histocompatibility complex class II, B7.1, and intercellular adhesion molecule-1 equipotent to 1,25-dihydroxyvitamin D3. Interestingly, the compound failed to induce vitamin D-induced differentiation of human promyelocytic leukemia cell line HL-60 to monocytes and was capable of antagonizing the action of 1,25-dihydroxyvitamin D3. In vivo, as analyzed in mice the compound potently inhibits the contact hypersensitivity when applied systemically. ZK 191784 has a clear therapeutic advantage over 1,25-dihydroxyvitamin D3 by inducing immunosuppressive effects also at concentrations that do not cause hypercalcemia. ZK 191784 is the first representative of a novel class of vitamin D analogs that might have therapeutic potential in T cell-mediated immune disorders.


Assuntos
Calcitriol/análogos & derivados , Calcitriol/farmacologia , Dermatite de Contato/tratamento farmacológico , Hipercalcemia/induzido quimicamente , Terapia de Imunossupressão/métodos , Animais , Doenças Autoimunes/tratamento farmacológico , Antígeno B7-1/metabolismo , Calcitriol/química , Diferenciação Celular/efeitos dos fármacos , Diferenciação Celular/imunologia , Divisão Celular/efeitos dos fármacos , Divisão Celular/imunologia , Citocinas/metabolismo , Regulação para Baixo/efeitos dos fármacos , Feminino , Células HL-60 , Antígenos HLA-DR/metabolismo , Humanos , Molécula 1 de Adesão Intercelular/metabolismo , Lipopolissacarídeos/farmacologia , Camundongos , Camundongos Endogâmicos , Monócitos/metabolismo , Receptores de Calcitriol/metabolismo , Linfócitos T/citologia , Linfócitos T/imunologia
12.
Curr Drug Targets Inflamm Allergy ; 3(4): 377-93, 2004 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-15584887

RESUMO

Beyond its effects on bone metabolism, calcium and phosphorus homeostasis, 1,25-dihydroxyvitamin D3 (1,25(OH)(2)D(3), calcitriol) exerts profound effects on the immune system. We here provide an overview over the metabolism, molecular and cellular action of 1,25(OH)(2)D(3) with particular regard to its immunomodulatory function. Effects of 1,25(OH)(2)D(3) on the immune system are manyfold and include suppression of T cell activation, shaping of cytokine secretion patterns, induction of regulatory T cells, modulation of proliferation, and interference with apoptosis. 1,25(OH)(2)D(3) further influences maturation, differentiation, and migration of antigen presenting cells. Altogether, its immunomodulatory potency is comparable to other established immunosuppressants without sharing their typical adverse effects. This profile makes 1,25(OH)(2)D(3) a potential drug for the treatment of immune-mediated diseases. Yet, the major obstacle for its clinical use, its potent calcemic activity, is not overcome to date. The identification or generation of novel vitamin D derivatives with dissociated calcemic and immunomodulatory properties is therefore a major task. Its success might eventually lead to promising drugs for future therapeutic exploitation of a wide array of immune diseases, such as psoriasis, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and others.


Assuntos
Adjuvantes Imunológicos/farmacologia , Calcitriol/análogos & derivados , Calcitriol/farmacologia , Fatores Imunológicos/fisiologia , Animais , Doenças Autoimunes/tratamento farmacológico , Doenças Autoimunes/imunologia , Doenças Autoimunes/prevenção & controle , Calcitriol/imunologia , Humanos
13.
J Invest Dermatol ; 132(2): 330-6, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-21938012

RESUMO

Atopic dermatitis (AD) is a common chronic inflammatory skin disease that has increased in prevalence over the last several decades in industrialized countries. AD is a multifactorial, heterogenous disease with a variety of defects in the immune system, in antimicrobial defense mechanisms and epidermal barrier integrity, which collectively contribute to the risk and severity of AD development. Vitamin D receptor (VDR) signaling has been shown to be important not only in the immune system but also in the skin and in particular keratinocytes to regulate skin homeostasis and epidermal barrier function. However, this work aimed to analyze the role and clinical efficiency of VDR activation by a VDR agonist without calcium-mobilizing activity in a mouse model of allergen-triggered eczema. We show that the systemic administration of the low-calcemic VDR agonist significantly improved the allergen-triggered eczema. Thereby, forkhead box P3 (Foxp3)-expressing regulatory T cells, revealed to have a role in AD, were selectively increased in the skin of VDR agonist-treated mice. Moreover, our results demonstrate a marked induction of skin barrier gene and antimicrobial peptide gene expression in skin lesions of VDR agonist-treated mice. Thus, our study provides evidence that systemic VDR agonist treatment may improve allergen-triggered eczema in vivo.


Assuntos
Alérgenos/imunologia , Eczema/tratamento farmacológico , Receptores de Calcitriol/fisiologia , Animais , Peptídeos Catiônicos Antimicrobianos/genética , Dermatite Atópica/tratamento farmacológico , Dermatite Atópica/etiologia , Feminino , Regulação da Expressão Gênica , Camundongos , Camundongos Endogâmicos BALB C , Receptores de Calcitriol/agonistas , Linfócitos T/fisiologia
14.
Sci Transl Med ; 3(104): 104ra102, 2011 Oct 12.
Artigo em Inglês | MEDLINE | ID: mdl-21998409

RESUMO

Control of tuberculosis worldwide depends on our understanding of human immune mechanisms, which combat the infection. Acquired T cell responses are critical for host defense against microbial pathogens, yet the mechanisms by which they act in humans remain unclear. We report that T cells, by the release of interferon-γ (IFN-γ), induce autophagy, phagosomal maturation, the production of antimicrobial peptides such as cathelicidin, and antimicrobial activity against Mycobacterium tuberculosis in human macrophages via a vitamin D-dependent pathway. IFN-γ induced the antimicrobial pathway in human macrophages cultured in vitamin D-sufficient sera, but not in sera from African-Americans that have lower amounts of vitamin D and who are more susceptible to tuberculosis. In vitro supplementation of vitamin D-deficient serum with 25-hydroxyvitamin D3 restored IFN-γ-induced antimicrobial peptide expression, autophagy, phagosome-lysosome fusion, and antimicrobial activity. These results suggest a mechanism in which vitamin D is required for acquired immunity to overcome the ability of intracellular pathogens to evade macrophage-mediated antimicrobial responses. The present findings underscore the importance of adequate amounts of vitamin D in all human populations for sustaining both innate and acquired immunity against infection.


Assuntos
Anti-Infecciosos/farmacologia , Interferon gama/metabolismo , Macrófagos/efeitos dos fármacos , Vitamina D/metabolismo , Peptídeos Catiônicos Antimicrobianos/química , Autofagia , Calcifediol/sangue , Humanos , Ativação Linfocitária , Macrófagos/citologia , Macrófagos/metabolismo , Modelos Biológicos , Monócitos/citologia , Mycobacterium tuberculosis/metabolismo , Tuberculose/microbiologia
16.
J Steroid Biochem Mol Biol ; 118(3): 142-50, 2010 Feb 15.
Artigo em Inglês | MEDLINE | ID: mdl-19931390

RESUMO

The mechanisms that control fibroproliferation and matrix deposition in lung fibrosis remain unclear. We speculate that vitamin D deficiency may contribute to pulmonary fibrosis since vitamin D deficiency has been implicated in several diseases. First, we confirmed the presence of vitamin D receptors (VDRs) in cultured NIH/3T3 and lung fibroblasts. Fibroblasts transfected with a vitamin D response element-reporter construct and exposed to the active vitamin D metabolite, 1,25(OH)(2)D(3), showed increased promoter activity indicating VDR functionality in these cells. Testing the effects of 1,25(OH)(2)D(3) on fibroblasts treated with transforming growth factor beta1 (TGFbeta1), considered a driver of many fibrotic disorders, we found that 1,25(OH)(2)D(3) inhibited TGFbeta1-induced fibroblast proliferation in a dose-dependent fashion. 1,25(OH)(2)D(3) also inhibited TGFbeta1 stimulation of alpha-smooth muscle actin expression and polymerization and prevented the upregulation of fibronectin and collagen in TGFbeta1-treated fibroblasts. Finally, we examined how 1,25(OH)(2)D(3) affects epithelial-mesenchymal transformation of lung epithelial cells upon exposure to TGFbeta1. We showed that the TGFbeta1-induced upregulation of mesenchymal cell markers and abnormal expression of epithelial cell markers were blunted by 1,25(OH)(2)D(3). These observations suggest that under TGFbeta1 stimulation, 1,25(OH)(2)D(3) inhibits the pro-fibrotic phenotype of lung fibroblasts and epithelial cells.


Assuntos
Células Epiteliais/efeitos dos fármacos , Fibroblastos/efeitos dos fármacos , Pulmão/efeitos dos fármacos , Pulmão/patologia , Fator de Crescimento Transformador beta1/antagonistas & inibidores , Fator de Crescimento Transformador beta1/farmacologia , Vitamina D/farmacologia , Actinas/genética , Actinas/metabolismo , Animais , Caderinas/metabolismo , Calcitriol/farmacologia , Linhagem Celular , Proliferação de Células/efeitos dos fármacos , Transdiferenciação Celular/efeitos dos fármacos , Células Cultivadas , Colágeno Tipo I/genética , Colágeno Tipo I/metabolismo , Colágeno Tipo III/genética , Células Epiteliais/patologia , Matriz Extracelular/efeitos dos fármacos , Matriz Extracelular/metabolismo , Fibroblastos/patologia , Fibronectinas/genética , Fibronectinas/metabolismo , Fibrose , Expressão Gênica/efeitos dos fármacos , Expressão Gênica/genética , Queratinas/metabolismo , Pulmão/citologia , Pulmão/metabolismo , Proteínas de Membrana/metabolismo , Camundongos , Camundongos Endogâmicos C57BL , Células NIH 3T3 , Fosfoproteínas/metabolismo , Inibidor 1 de Ativador de Plasminogênio/genética , Antígeno Nuclear de Célula em Proliferação/metabolismo , Ratos , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Elemento de Resposta à Vitamina D/genética , Proteína da Zônula de Oclusão-1
17.
Anticancer Res ; 30(7): 2667-72, 2010 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-20682996

RESUMO

BACKGROUND/AIM: Human ether à-go-go-1 (EAG1) potassium channels are promising anticancer targets. Calcitriol has antitumoural properties. This study investigated EAG1 regulation by calcitriol in normal and cancer cells. MATERIALS AND METHODS: Cancer cell lines from cervix, prostate, mammary gland, and normal placenta trophoblasts were cultured. Calcitriol was determined by HPLC. Gene and protein expression were assessed by real-time RT-PCR and western blot analysis, respectively. Calcitriol-synthesising enzyme CYP27B1 or vitamin D receptor (VDR), were transfected in cervical cancer SiHa cells. Cell proliferation was assayed with XTT. RESULTS: Calcitriol decreased EAG1 mRNA in all cell types, and EAG1 protein and proliferation in SiHa cells. VDR antagonist ZK-159222 prevented the calcitriol effect on EAG1 mRNA. CYP27B1-transfected cells produced more calcitriol and less EAG1 mRNA. EAG1 mRNA was more potently inhibited by calcitriol in VDR-transfected cells. CONCLUSION: EAG1 is a calcitriol target in normal and cancer cells and calcitriol is a potential therapy for cervical cancer.


Assuntos
Calcitriol/farmacologia , Canais de Potássio Éter-A-Go-Go/biossíntese , Neoplasias do Colo do Útero/metabolismo , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/biossíntese , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/genética , 25-Hidroxivitamina D3 1-alfa-Hidroxilase/metabolismo , Neoplasias da Mama/genética , Neoplasias da Mama/metabolismo , Calcitriol/análogos & derivados , Calcitriol/metabolismo , Linhagem Celular Tumoral , Regulação para Baixo/efeitos dos fármacos , Canais de Potássio Éter-A-Go-Go/genética , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Células HeLa , Humanos , Masculino , Neoplasias da Próstata/genética , Neoplasias da Próstata/metabolismo , RNA Mensageiro/biossíntese , RNA Mensageiro/genética , Receptores de Calcitriol/antagonistas & inibidores , Receptores de Calcitriol/biossíntese , Receptores de Calcitriol/genética , Receptores de Calcitriol/metabolismo , Transfecção , Neoplasias do Colo do Útero/tratamento farmacológico , Neoplasias do Colo do Útero/genética
18.
J Invest Dermatol ; 130(2): 481-91, 2010 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-19657354

RESUMO

Mitogen-activated protein kinase-activated protein kinase 2 (MK2) is a downstream molecule of p38, involved in the production of TNF-alpha, a key cytokine, and an established drug target for many inflammatory diseases. We investigated the role of MK2 in skin inflammation to determine its drug target potential. MK2 deficiency significantly decreased plasma TNF-alpha levels after systemic endotoxin application. Deficient mice showed decreased skin edema formation in chronic 2-O-tetradecanoylphorbol-13-acetate (TPA)-induced irritative dermatitis and in subacute 2,4-dinitrofluorobenzene (DNFB)-induced contact hypersensitivity. Surprisingly, MK2 deficiency did not inhibit edema formation in subacute 2,4-dinitrochlorobenzene (DNCB)-induced contact allergy and even increased TNF-alpha and IL-1beta levels as well as granulocyte infiltration in diseased ears. Ear inflammation in this model, however, was inhibited by TNF-alpha neutralization as it was in the subacute DNFB model. MK2 deficiency also did not show anti-inflammatory effects in acute DNFB-induced contact hypersensitivity, whereas the p38 inhibitor, SB203580, ameliorated skin inflammation supporting a pathophysiological role of p38. When evaluating possible mechanisms, we found that TNF-alpha production in MK2-deficient spleen cells was strongly diminished after TLR stimulation but less affected after T-cell receptor stimulation. Our data suggest that MK2, in contrast to its downstream effector molecule, TNF-alpha, has a rather elusive role in T-cell-dependent cutaneous inflammation.


Assuntos
Inflamação , Peptídeos e Proteínas de Sinalização Intracelular/metabolismo , Proteínas Serina-Treonina Quinases/metabolismo , Pele/patologia , Proteínas Quinases p38 Ativadas por Mitógeno/metabolismo , Animais , Dermatite de Contato , Dinitrofluorbenzeno/química , Feminino , Granulócitos/citologia , Homozigoto , Camundongos , Camundongos Endogâmicos C57BL , Receptores de Antígenos de Linfócitos T/metabolismo , Pele/enzimologia , Acetato de Tetradecanoilforbol/farmacologia , Fator de Necrose Tumoral alfa/metabolismo
19.
PLoS One ; 4(7): e6340, 2009 Jul 22.
Artigo em Inglês | MEDLINE | ID: mdl-19623255

RESUMO

Antimicrobial peptides (AMPs) are strongly expressed in lesional skin in psoriasis and play an important role as proinflammatory "alarmins" in this chronic skin disease. Vitamin D analogs like calcipotriol have antipsoriatic effects and might mediate this effect by changing AMP expression. In this study, keratinocytes in lesional psoriatic plaques showed decreased expression of the AMPs beta-defensin (HBD) 2 and HBD3 after topical treatment with calcipotriol. At the same time, calcipotriol normalized the proinflammatory cytokine milieu and decreased interleukin (IL)-17A, IL-17F and IL-8 transcript abundance in lesional psoriatic skin. In contrast, cathelicidin antimicrobial peptide expression was increased by calcipotriol while psoriasin expression remained unchanged. In cultured human epidermal keratinocytes the effect of different vitamin D analogs on the expression of AMPs was further analyzed. All vitamin D analogs tested blocked IL-17A induced HBD2 expression by increasing IkappaB-alpha protein and inhibition of NF-kappaB signaling. At the same time vitamin D analogs induced cathelicidin through activation of the vitamin D receptor and MEK/ERK signaling. These studies suggest that vitamin D analogs differentially alter AMP expression in lesional psoriatic skin and cultured keratinocytes. Balancing AMP "alarmin" expression might be a novel goal in treatment of chronic inflammatory skin diseases.


Assuntos
Anti-Infecciosos/metabolismo , Regulação da Expressão Gênica/efeitos dos fármacos , Peptídeos/metabolismo , Psoríase/metabolismo , Vitamina D/farmacologia , Peptídeos Catiônicos Antimicrobianos/genética , Western Blotting , Células Cultivadas , Genes Reporter , Humanos , Interleucina-17/genética , Interleucina-8/genética , Sistema de Sinalização das MAP Quinases , Peptídeos/genética , Reação em Cadeia da Polimerase , Interferência de RNA , Receptores de Calcitriol/metabolismo , Vitamina D/análogos & derivados , Catelicidinas
20.
PLoS One ; 4(6): e5810, 2009 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-19503839

RESUMO

Antimicrobial effector mechanisms are central to the function of the innate immune response in host defense against microbial pathogens. In humans, activation of Toll-like receptor 2/1 (TLR2/1) on monocytes induces a vitamin D dependent antimicrobial activity against intracellular mycobacteria. Here, we report that TLR activation of monocytes triggers induction of the defensin beta 4 gene (DEFB4), requiring convergence of the IL-1beta and vitamin D receptor (VDR) pathways. TLR2/1 activation triggered IL-1beta activity, involving the upregulation of both IL-1beta and IL-1 receptor, and downregulation of the IL-1 receptor antagonist. TLR2/1L induction of IL-1beta was required for upregulation of DEFB4, but not cathelicidin, whereas VDR activation was required for expression of both antimicrobial genes. The differential requirements for induction of DEFB4 and cathelicidin were reflected by differences in their respective promoter regions; the DEFB4 promoter had one vitamin D response element (VDRE) and two NF-kappaB sites, whereas the cathelicidin promoter had three VDREs and no NF-kappaB sites. Transfection of NF-kappaB into primary monocytes synergized with 1,25D3 in the induction of DEFB4 expression. Knockdown of either DEFB4 or cathelicidin in primary monocytes resulted in the loss of TLR2/1-mediated antimicrobial activity against intracellular mycobacteria. Therefore, these data identify a novel mechanism of host defense requiring the induction of IL-1beta in synergy with vitamin D activation, for the TLR-induced antimicrobial pathway against an intracellular pathogen.


Assuntos
Anti-Infecciosos/farmacologia , Regulação da Expressão Gênica , Interleucina-1beta/metabolismo , Receptores de Calcitriol/metabolismo , Receptor 2 Toll-Like/metabolismo , Peptídeos Catiônicos Antimicrobianos/metabolismo , Humanos , Modelos Biológicos , Monócitos/metabolismo , Monócitos/microbiologia , Mycobacterium tuberculosis/metabolismo , NF-kappa B/metabolismo , Regiões Promotoras Genéticas , Células-Tronco , Receptor 1 Toll-Like/metabolismo , beta-Defensinas/genética , Catelicidinas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA