Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Spine (Phila Pa 1976) ; 47(6): 505-513, 2022 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-34669674

RESUMO

STUDY DESIGN: Laboratory study using a rat T9 contusion model of spinal cord injury. OBJECTIVE: This study aims to examine whether a combinatory treatment of Pioglitazone (PGZ) and granulocyte colony-stimulating factor (GCSF) can support neural stem/progenitor cells (NSPCs) directly and provide a sustainable microenvironment through immunomodulatory mechanisms. SUMMARY OF BACKGROUND DATA: Neuroinflammation plays a crucial role in the progression of spinal cord injury (SCI) and hinders NSPC-mediated repair and regeneration. Broad acting drugs that mitigate inflammation and support NSPC proliferation have not been tested together in SCI research models. METHODS: Isolated NSPCs were treated with vehicle control, PGZ, GCSF, or both PGZ and GSCF for 24 hours and stained with proliferation marker Ki67. Adult female Sprague-Dawley rats sustained moderate-to-severe contusion-based SCI at T9 and were administered either vehicle control, PGZ, GCSF, or both PGZ and GCSF treatments. RESULTS: Immunocytochemistry revealed that cultured NSPCs treated with both drugs produced higher numbers of actively proliferating cells and total cell numbers. ELISA on spinal cord tissue lysates at 1, 3, and 7 days post-injury (DPI) demonstrated that animals treated with PGZ, GCSF, or combination therapy showed significantly higher doublecortin levels at 7 DPI compared to control animals (P < 0.05). Immunohistochemistry of injured tissue at 3, 7, and 14 DPI revealed no difference of ependymal NSPC proliferation between groups, but showed a significant decrease in lesion size with combination therapy compared to controls. Functional recovery was assessed by the Basso, Beattie, Bresnahan locomotor rating scale. Animals treated with both drugs had significantly higher levels of function at 1 (P < 0.001), 3 (P < 0.001), 7 (P < 0.05), and 14 (P < 0.05) DPI compared to controls. CONCLUSION: These results indicate that PGZ and GCSF treatment synergistically enhance NSPCs numbers and improve functional recovery after SCI. Our findings support an immunomodulatory strategy to recruit native NSPCs as a potential acute care intervention for SCI.Level of Evidence: N/A.


Assuntos
Células-Tronco Neurais , Traumatismos da Medula Espinal , Animais , Feminino , Células-Tronco Neurais/transplante , Ratos , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medula Espinal
2.
Spine (Phila Pa 1976) ; 46(16): 1055-1062, 2021 Aug 15.
Artigo em Inglês | MEDLINE | ID: mdl-34398133

RESUMO

STUDY DESIGN: Laboratory study using a rat T9 contusion model of spinal cord injury (SCI). OBJECTIVE: The purpose of this study was to evaluate which method of delivery of soluble keratin biomaterials would best support functional restoration through the macrophage polarization paradigm. SUMMARY OF BACKGROUND DATA: SCI is a devastating neurologic event with complex pathophysiological mechanisms that currently has no cure. After injury, macrophages and resident microglia are key regulators of inflammation and tissue repair exhibiting phenotypic and functional plasticity. Keratin biomaterials have been demonstrated to influence macrophage polarization and promote the M2 anti-inflammatory phenotype that attenuates inflammatory responses. METHODS: Anesthetized female Lewis rats were subjected to moderate T9 contusion SCI and randomly divided into: no therapy (control group), an intrathecally injected keratin group, and a keratin-soaked sponge group (n = 11 in all groups). Functional recovery assessments were obtained at 3- and 6-weeks post-injury (WPI) using gait analysis performed with the DigiGait Imaging System treadmill and at 1, 3, 7, 14, 21, 28, 35, and 42 days post-injury by the Basso, Beattie, Bresnahan (BBB) locomotor rating scale. Histology and immunohistochemistry of serial spinal cord sections were performed to assess injury severity and treatment efficacy. RESULTS: Compared to control rats, applying keratin materials after injury improved functional recovery in certain gait parameters and overall trended toward significance in BBB scores; however, no significant differences were observed with tissue analysis between groups at 6 WPI. CONCLUSION: Results suggest that keratin biomaterials support some locomotor functional recovery and may alter the acute inflammatory response by inducing macrophage polarization following SCI. This therapy warrants further investigation into treatment of SCI.Level of Evidence: N/A.


Assuntos
Materiais Biocompatíveis , Traumatismos da Medula Espinal , Animais , Modelos Animais de Doenças , Feminino , Queratinas , Ratos , Ratos Endogâmicos Lew , Ratos Sprague-Dawley , Recuperação de Função Fisiológica , Medula Espinal , Traumatismos da Medula Espinal/tratamento farmacológico
3.
Spine (Phila Pa 1976) ; 44(6): E329-E337, 2019 03 15.
Artigo em Inglês | MEDLINE | ID: mdl-30138254

RESUMO

STUDY DESIGN: A laboratory study using a rabbit annular puncture model of intervertebral disc degeneration (IDD). OBJECTIVE: The aims of this study were to assess whether an amniotic suspension allograft (ASA) containing particulated human amnion and amniotic fluid derived cells regains intervertebral disc height and morphology and improves histologic scoring in a rabbit model of IDD. SUMMARY OF BACKGROUND DATA: In contrast to current surgical interventions for IDD, in which the primary goal is to relieve symptomatic pain, one novel strategy involves the direct injection of anabolic cytokines. Current therapies for IDD are limited by both the short half-life of therapeutic proteins and general decline in anabolic cell populations. METHODS: Intervertebral discs in New Zealand white rabbits were punctured using 18-gauge needle under fluoroscopic guidance. Four weeks post-puncture, two groups of rabbits were injected with either ASA or a vehicle/sham control, while a third group was untreated. Weekly radiographs were obtained for 12 weeks to assess disc height index (DHI). Magnetic resonance imaging (MRI) T2 relaxation time was evaluated at weeks 4 and 12 to assess morphological changes. Histologic sections were evaluated on a semi-quantitative grading scale. RESULTS: Before treatment at week 4, DHIs and normalized T2 relaxation times between the three groups were not significantly different. At week 12, ASA-treated rabbits exhibited significantly greater DHIs and MRI T2 relaxation times than vehicle and untreated control groups. The ASA group had higher mean histologic score than the vehicle group, which demonstrated extensive fiber disorganization and delamination with reduced proteoglycan staining on histology. CONCLUSION: Minimally invasive intervention with intradiscal injection of ASA was successful in reducing IDD in a reproducible rabbit model, with significant improvement in disc height and morphology when compared with vehicle and untreated control groups on radiographic and MRI analyses. LEVEL OF EVIDENCE: N/A.


Assuntos
Aloenxertos/transplante , Âmnio/transplante , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/cirurgia , Animais , Disco Intervertebral/diagnóstico por imagem , Disco Intervertebral/patologia , Disco Intervertebral/cirurgia , Degeneração do Disco Intervertebral/patologia , Imageamento por Ressonância Magnética/métodos , Punções/efeitos adversos , Coelhos
4.
J Orthop Surg (Hong Kong) ; 26(3): 2309499018792715, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30114959

RESUMO

PURPOSE: Various animal models have been proposed to mimic the pathophysiologic process of intervertebral disc degeneration, a leading cause of back pain. The purpose of this study is to describe a minimally invasive technique via percutaneous needle puncture of the annulus fibrosus in New Zealand white rabbits. METHODS: Under fluoroscopic guidance, an 18-gauge spinal needle was inserted 2 cm lateral to the midline spinous process. The needle was slowly advanced at approximately 45° angle until it was adjacent to the L5/L6 disc space. Lateral and anteroposterior views were used to verify correct needle position before advancing into the nucleus pulposus. The rabbits underwent weekly X-rays for 4 weeks to assess disc height index. MRI T2 relaxation was evaluated at week four to assess morphological changes. Discs were histologically graded on a 12-point scale to assess degeneration and compared to discs obtained from uninjured rabbits. RESULTS: There were no complications associated with the percutaneous needle puncture procedure. All animals survived the duration of the experiment. Four weeks after injury, the disc height had progressively narrowed to approximately 50% of baseline. MRI assessment at the 4-week time point demonstrated a mean T2 relaxation time at the L5/L6 level that was 20.9% of the T2 relaxation time at the uninjured L4/L5 disc level ( p < 0.001). Histological analysis demonstrated lamellar disorganization of the annulus and decreased cellularity and proteoglycan content within the injured nucleus compared to uninjured control discs. CONCLUSION: The present study demonstrated a reliable technique of inducing an annular tear via a percutaneous needle puncture. Compared to open surgical approaches, the percutaneous model produces similar progressive disc degeneration while minimizing harm to the animal subjects. CLINICAL RELEVANCE: The present study establishes a technique for the introduction of novel therapeutic agents to treat disc degeneration that may translate to future clinical trials.


Assuntos
Anel Fibroso/cirurgia , Degeneração do Disco Intervertebral/etiologia , Punções , Animais , Modelos Animais de Doenças , Degeneração do Disco Intervertebral/diagnóstico por imagem , Degeneração do Disco Intervertebral/fisiopatologia , Imageamento por Ressonância Magnética , Masculino , Agulhas , Coelhos , Radiografia
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA