Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Talanta ; 281: 126894, 2025 Jan 01.
Artigo em Inglês | MEDLINE | ID: mdl-39303326

RESUMO

This work presents a simple and accurate method for the fast sequential determination of Rh, Pd, and Pt in spent automotive catalysts and e-wastes using high-resolution continuum source flame atomic absorption spectrometry (HR-CS FAAS). Extensive research was carried out in model systems on the impact of potential interfering substances on analyte's signals measured in two types of flame (air-C2H2 and N2O-C2H2). Mutual analyte interactions were also taken into account. Different background corrections offered by the HR-CS AAS spectrometer were tested to obtain interference-free analyte signals and the best detectability. Using an air-C2H2 flame and 1 % La solution as a spectrochemical buffer provided good sensitivity and accurate determinations of Rh, Pd, and Pt using a simple calibration graph. Microwave-assisted leaching of PGE from waste samples with aqua regia at 240 °C for 60 min efficiently leached all target metals, which significantly simplified and shortened the sample preparation step. The detectability of the method (detection limit of 0.4, 0.6, and 5 mg kg-1 for Rh, Pd, and Pt, respectively) and precision (< 7 %) were satisfactory. The accuracy of the method was confirmed by analysis of certified reference materials (spent automotive catalyst (ERM-EB504), electronic scrap (BAM-M505a)), and calculated zeta score values. The recoveries for Rh, Pd, and Pt in ERM-EB504 were 93, 101, and 96 %, respectively, and for Pd in BAM-M505a, 97 %. The developed method can be used to assess the value of secondary raw materials, such as various types of spent catalysts and e-waste containing Rh, Pd, and Pt.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA