Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Bioresour Technol ; 394: 130300, 2024 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-38185445

RESUMO

In this study, the effect of α-Fe2O3 nanoparticles spiking in urban wastewater (UWW) on growth rate, wastewater treatment ability and bioproducts generation of C. vulgaris and Spirulina was investigated and compared with pure cultivation system. The biomass concentration of C. vulgaris and Spirulina improved by 20 % and 39 % at 10 and 15 mg/L α-Fe2O3, respectively while the both microalgae growth pattern fitted better with Gompertz simulation after treatment with α-Fe2O3. The nutrients mass balance revealed that 1 g of treated C. vulgaris and Spirulina could uptake more COD, TN and TP in comparison to the untreated cells. The lipid generation increased remarkably (C. vulgaris: 45 % and Spirulina: 72 %) after α-Fe2O3 treatment. While, the addition of α-Fe2O3 showed no significant impact on the protein and carbohydrate productivity. Overall, this study evangelize the role of nanoparticles on promoting microalgae applications as a sustainable approach for UWW treatment and promising feedstock for biofuel production.


Assuntos
Chlorella vulgaris , Compostos Férricos , Microalgas , Purificação da Água , Microalgas/metabolismo , Nutrientes , Biomassa , Nanopartículas Magnéticas de Óxido de Ferro , Expressão Gênica , Chlorella vulgaris/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA