Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Microb Ecol ; 79(4): 1034-1043, 2020 May.
Artigo em Inglês | MEDLINE | ID: mdl-31754744

RESUMO

Prophylactic or therapeutic antibiotic use along with chemotherapy treatment potentially has a long-standing adverse effect on the resident gut microbiota. We have established a case-control cohort of 32 pediatric and adolescent acute lymphoblastic leukemia (ALL) patients and 25 healthy siblings (sibling controls) to assess the effect of chemotherapy as well as antibiotic prophylaxis on the gut microbiota. We observe that the microbiota diversity and richness of the ALL group is significantly lower than that of the control group at diagnosis and during chemotherapy. The microbiota diversity is even lower in antibiotics-exposed ALL patients. Although the gut microbial diversity tends to stabilize after 1-year post-chemotherapy, their abundances were altered because of chemotherapy and prophylactic antibiotic treatments. Specifically, the abundances of mucolytic gram-positive anaerobic bacteria, including Ruminococcus gnavus and Ruminococcus torques, tended to increase during the chemotherapy regimen and continued to be elevated 1 year beyond the initiation of chemotherapy. This dysbiosis may contribute to the development of gastrointestinal complications in ALL children following chemotherapy. These findings set the stage to further understand the role of the gut microbiome dynamics in ALL patients and their potential role in alleviating some of the adverse side effects of chemotherapy and antibiotics use in immunocompromised children.


Assuntos
Antibacterianos/administração & dosagem , Antineoplásicos/administração & dosagem , Disbiose/microbiologia , Microbioma Gastrointestinal/efeitos dos fármacos , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , Adolescente , Estudos de Casos e Controles , Criança , Pré-Escolar , Estudos de Coortes , Disbiose/induzido quimicamente , Feminino , Humanos , Lactente , Masculino
2.
BMC Genomics ; 17(1): 635, 2016 08 15.
Artigo em Inglês | MEDLINE | ID: mdl-27527070

RESUMO

BACKGROUND: An estimated 15,000 children and adolescents under the age of 19 years are diagnosed with leukemia, lymphoma and other tumors in the USA every year. All children and adolescent acute leukemia patients will undergo chemotherapy as part of their treatment regimen. Fortunately, survival rates for most pediatric cancers have improved at a remarkable pace over the past three decades, and the overall survival rate is greater than 90 % today. However, significant differences in survival rate have been found in different age groups (94 % in 1-9.99 years, 82 % in ≥10 years and 76 % in ≥15 years). ALL accounts for about three out of four cases of childhood leukemia. Intensive chemotherapy treatment coupled with prophylactic or therapeutic antibiotic use could potentially have a long-term effect on the resident gastrointestinal (GI) microbiome. The composition of GI microbiome and its changes upon chemotherapy in pediatric and adolescent leukemia patients is poorly understood. In this study, using 16S rRNA marker gene sequences we profile the GI microbial communities of pediatric and adolescent acute leukemia patients before and after chemotherapy treatment and compare with the microbiota of their healthy siblings. RESULTS: Our study cohort consisted of 51 participants, made up of matched pediatric and adolescent patients with ALL and a healthy sibling. We elucidated and compared the GI microbiota profiles of patients and their healthy sibling controls via analysis of 16S rRNA gene sequencing data. We assessed the GI microbiota composition in pediatric and adolescent patients with ALL during the course of chemotherapy by comparing stool samples taken before chemotherapy with stool samples collected at varying time points during the chemotherapeutic treatment. The microbiota profiles of both patients and control sibling groups are dominated by members of Bacteroides, Prevotella, and Faecalibacterium. At the genus level, both groups share many taxa in common, but the microbiota diversity of the patient group is significantly lower than that of the control group. It was possible to distinguish between the patient and control groups based on their microbiota profiles. The top taxa include Anaerostipes, Coprococcus, Roseburia, and Ruminococcus2 with relatively higher abundance in the control group. The observed microbiota changes are likely the result of several factors including a direct influence of therapeutic compounds on the gut flora and an indirect effect of chemotherapy on the immune system, which, in turn, affects the microbiota. CONCLUSIONS: This study provides significant information on GI microbiota populations in immunocompromised children and opens up the potential for developing novel diagnostics based on stool tests and therapies to improve the dysbiotic condition of the microbiota at the time of diagnosis and in the earliest stages of chemotherapy.


Assuntos
Trato Gastrointestinal/microbiologia , Microbiota , Leucemia-Linfoma Linfoblástico de Células Precursoras/diagnóstico , Leucemia-Linfoma Linfoblástico de Células Precursoras/microbiologia , Adolescente , Antineoplásicos/uso terapêutico , Área Sob a Curva , Bactérias/genética , Bactérias/isolamento & purificação , Biodiversidade , Criança , Pré-Escolar , DNA Bacteriano/química , DNA Bacteriano/isolamento & purificação , DNA Bacteriano/metabolismo , Fezes/microbiologia , Feminino , Humanos , Lactente , Recém-Nascido , Masculino , Leucemia-Linfoma Linfoblástico de Células Precursoras/tratamento farmacológico , RNA Ribossômico 16S/química , RNA Ribossômico 16S/isolamento & purificação , RNA Ribossômico 16S/metabolismo , Curva ROC , Análise de Sequência de DNA , Adulto Jovem
3.
Pediatr Blood Cancer ; 63(4): 727-30, 2016 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-26727971

RESUMO

Extranodal natural killer (NK)/T-cell lymphoma (ENKTCL) is a distinct type of non-Hodgkin lymphoma predominantly observed in Asian and Latin American adult males. A 12-year-old Hispanic female diagnosed with ENKTCL was enrolled in our genomic profiling research protocol. We identified specific somatic alterations consistent with diagnosis of ENKTCL as well as oncogenic mutations in MAP2K1 and STAT3. To our knowledge, this is the first report of an immunophenotypically confirmed and genetically profiled case of ENKTCL in a female pediatric patient in the United States, including its unique treatment and favorable outcome.


Assuntos
Quimiorradioterapia/métodos , Linfoma Extranodal de Células T-NK/genética , Linfoma Extranodal de Células T-NK/terapia , Medicina de Precisão/métodos , Fator de Transcrição STAT3/genética , Protocolos de Quimioterapia Combinada Antineoplásica/uso terapêutico , Asparaginase/administração & dosagem , Criança , Citarabina/administração & dosagem , Análise Mutacional de DNA , Dexametasona/administração & dosagem , Etoposídeo/administração & dosagem , Feminino , Humanos , Hidrocortisona/administração & dosagem , Ácidos Hidroxâmicos/administração & dosagem , Ifosfamida/administração & dosagem , MAP Quinase Quinase 1/genética , Metotrexato/administração & dosagem , Mutação , Fator 1 de Ligação ao Domínio I Regulador Positivo , Proteínas Repressoras/genética , Vorinostat
4.
JAMA Netw Open ; 2(10): e1913968, 2019 10 02.
Artigo em Inglês | MEDLINE | ID: mdl-31651965

RESUMO

Importance: Pediatric cancers are epigenetic diseases; therefore, considering tumor gene expression information is necessary for a complete understanding of the tumorigenic processes. Objective: To evaluate the feasibility and utility of incorporating comparative gene expression information into the precision medicine framework for difficult-to-treat pediatric and young adult patients with cancer. Design, Setting, and Participants: This cohort study was conducted as a consortium between the University of California, Santa Cruz (UCSC) Treehouse Childhood Cancer Initiative and clinical genomic trials. RNA sequencing (RNA-Seq) data were obtained from the following 4 clinical sites and analyzed at UCSC: British Columbia Children's Hospital (n = 31), Lucile Packard Children's Hospital at Stanford University (n = 80), CHOC Children's Hospital and Hyundai Cancer Institute (n = 46), and the Pacific Pediatric Neuro-Oncology Consortium (n = 24). The study dates were January 1, 2016, to March 22, 2017. Exposures: Participants underwent tumor RNA-Seq profiling as part of 4 separate clinical trials at partner hospitals. The UCSC either downloaded RNA-Seq data from a partner institution for analysis in the cloud or provided a Docker pipeline that performed the same analysis at a partner institution. The UCSC then compared each participant's tumor RNA-Seq profile with more than 11 000 uniformly analyzed tumor profiles from pediatric and young adult patients with cancer, downloaded from public data repositories. These comparisons were used to identify genes and pathways that are significantly overexpressed in each patient's tumor. Results of the UCSC analysis were presented to clinical partners. Main Outcomes and Measures: Feasibility of a third-party institution (UCSC Treehouse Childhood Cancer Initiative) to obtain tumor RNA-Seq data from patients, conduct comparative analysis, and present analysis results to clinicians; and proportion of patients for whom comparative tumor gene expression analysis provided useful clinical and biological information. Results: Among 144 samples from children and young adults (median age at diagnosis, 9 years; range, 0-26 years; 72 of 118 [61.0%] male [26 patients sex unknown]) with a relapsed, refractory, or rare cancer treated on precision medicine protocols, RNA-Seq-derived gene expression was potentially useful for 99 of 144 samples (68.8%) compared with DNA mutation information that was potentially useful for only 34 of 74 samples (45.9%). Conclusions and Relevance: This study's findings suggest that tumor RNA-Seq comparisons may be feasible and highlight the potential clinical utility of incorporating such comparisons into the clinical genomic interpretation framework for difficult-to-treat pediatric and young adult patients with cancer. The study also highlights for the first time to date the potential clinical utility of harmonized publicly available genomic data sets.


Assuntos
Neoplasias/genética , RNA Neoplásico/análise , Análise de Sequência de RNA , Canadá , Criança , Pré-Escolar , Feminino , Expressão Gênica , Humanos , Lactente , Recém-Nascido , Masculino , Medicina de Precisão , Estados Unidos , Adulto Jovem
5.
J Adolesc Young Adult Oncol ; 5(3): 297-302, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-26974246

RESUMO

Glassy cell carcinoma of the cervix (GCCC) is a very rare and aggressive form of cervical cancer. An adolescent female with advanced metastatic disease was enrolled in our genomic profiling research protocol. We identified high-level amplification of epidermal growth factor receptor (EGFR) and Yes-associated protein-1 (YAP1), which led to the addition of EGFR inhibitors to the chemotherapy regimen. Here, we report the first genetically profiled case of GCCC with potential therapeutic implications.


Assuntos
Receptores ErbB/genética , Biologia Molecular/métodos , Neoplasias do Colo do Útero/genética , Adolescente , Feminino , Humanos , Neoplasias do Colo do Útero/patologia
6.
Nat Rev Clin Oncol ; 12(8): 465-80, 2015 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-26011488

RESUMO

Adolescent and young adult (AYA) patients with cancer are a unique category of patients who, depending on age at time of diagnosis, might receive treatment from oncologists specializing either in the treatment of children or adults. In the USA, AYA oncology generally encompasses patients 15-39 years of age. AYA patients with cancer typically present with diseases that span the spectrum from 'paediatric' cancers (such as acute lymphoblastic leukaemia [ALL] and brain tumours) to 'adult' tumours (such as breast cancer and melanoma), as well as cancers that are largely unique to their age group (such as testicular cancer and bone tumours). Research indicates that outcomes of AYA patients with cancer are influenced not only by the treatment provided, but also by factors related to 'host' biology. In addition to the potential biological and cancer-specific differences between AYAs and other patients with cancer, AYA patients also often have disparate access to clinical trials and suffer from a lack of age-appropriate psychosocial support services and health services, which might influence survival as well as overall quality of life. In this Review, these issues are discussed, with a focus on two types of AYA cancer--ALL and melanoma--highlighting findings arising from the use of emerging technologies, such as whole-genome sequencing.


Assuntos
Leucemia-Linfoma Linfoblástico de Células Precursoras/terapia , Adolescente , Adulto , Ensaios Clínicos como Assunto , Atenção à Saúde , Conhecimentos, Atitudes e Prática em Saúde , Acessibilidade aos Serviços de Saúde , Humanos , Imunoterapia/métodos , Melanoma/genética , Melanoma/patologia , Melanoma/terapia , Mutação/genética , Metástase Neoplásica , Defesa do Paciente , Patient Protection and Affordable Care Act , Seleção de Pacientes , Leucemia-Linfoma Linfoblástico de Células Precursoras/patologia , Proteínas Proto-Oncogênicas B-raf/genética , Fatores de Risco , Neoplasias Cutâneas/genética , Neoplasias Cutâneas/patologia , Neoplasias Cutâneas/terapia , Serviço Social/organização & administração , Sobreviventes/estatística & dados numéricos , Adulto Jovem
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA