Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Vet Microbiol ; 250: 108859, 2020 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-33039727

RESUMO

Pigs are an important reservoir for human influenza viruses, and influenza causes significant economic loss to the swine industry. As demonstrated during the 2009 H1N1 pandemic, control of swine influenza virus infection is a critical step toward blocking emergence of human influenza virus. An effective vaccine that can induce broadly protective immunity against heterologous influenza virus strains is critically needed. In our previous studies [McCormick et al., 2015; PLoS One, 10(6):e0127649], we used molecular breeding (DNA shuffling) strategies to increase the breadth of the variable and conserved epitopes expressed within a single influenza A virus chimeric hemagglutinin (HA) protein. Chimeric HAs were constructed using parental HAs from the 2009 pandemic virus and swine influenza viruses that had a history of zoonotic transmission to humans. In the current study, we used parainfluenza virus 5 (PIV-5) as a vector to express one of these chimeric HA antigens, HA-113. Recombinant PIV-5 expressing HA-113 (PIV5-113) were rescued, and immunogenicity and protective efficacy were tested in both mouse and pig models. The results showed that PIV5-113 can protect mice and pigs against challenge with viruses expressing parental HAs. The protective immunity was extended against other genetically diversified influenza H1-expressing viruses. Our work demonstrates that PIV5-based influenza vaccines are efficacious as vaccines for pigs. The PIV5 vaccine vector and chimeric HA-113 antigen are discussed in the context of the development of universal influenza vaccines and the potential contribution of PIV5-113 as a candidate universal vaccine.


Assuntos
Anticorpos Antivirais/sangue , Glicoproteínas de Hemaglutininação de Vírus da Influenza/imunologia , Vacinas contra Influenza/imunologia , Infecções por Orthomyxoviridae/prevenção & controle , Vírus da Parainfluenza 5/genética , Doenças dos Suínos/prevenção & controle , Animais , Anticorpos Antivirais/imunologia , Proteção Cruzada , Modelos Animais de Doenças , Feminino , Vetores Genéticos , Glicoproteínas de Hemaglutininação de Vírus da Influenza/genética , Imunogenicidade da Vacina , Camundongos , Camundongos Endogâmicos BALB C , Suínos , Doenças dos Suínos/virologia , Vacinas Sintéticas/administração & dosagem , Vacinas Sintéticas/imunologia
2.
Viral Immunol ; 32(3): 131-143, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30822217

RESUMO

Influenza A viruses (IAVs) have multiple mechanisms for altering the host immune response to aid in virus survival and propagation. While both type I and II interferons (IFNs) have been associated with increased bacterial superinfection (BSI) susceptibility, we found that in some cases type I IFNs can be beneficial for BSI outcome. Specifically, we have shown that antagonism of the type I IFN response during infection by some IAVs can lead to the development of deadly BSI. The nonstructural protein 1 (NS1) from IAV is well known for manipulating host type I IFN responses, but the viral proteins mediating BSI severity remain unknown. In this study, we demonstrate that the PDZ-binding motif (PDZ-bm) of the NS1 C-terminal region from mouse-adapted A/Puerto Rico/8/34-H1N1 (PR8) IAV dictates BSI susceptibility through regulation of IFN-α/ß production. Deletion of the NS1 PDZ-bm from PR8 IAV (PR8-TRUNC) resulted in 100% survival and decreased bacterial burden in superinfected mice compared with 0% survival in mice superinfected after PR8 infection. This reduction in BSI susceptibility after infection with PR8-TRUNC was due to the presence of IFN-ß, as protection from BSI was lost in Ifn-ß-/- mice, resembling BSI during PR8 infection. PDZ-bm in PR8-infected mice inhibited the production of IFN-ß posttranscriptionally, and both delayed and reduced expression of the tunable interferon-stimulated genes. Finally, a similar lack of BSI susceptibility, due to the presence of IFN-ß on day 7 post-IAV infection, was also observed after infection of mice with A/TX98-H3N2 virus that naturally lacks a PDZ-bm in NS1, indicating that this mechanism of BSI regulation by NS1 PDZ-bm may not be restricted to PR8 IAV. These results demonstrate that the NS1 C-terminal PDZ-bm, like the one present in PR8 IAV, is involved in controlling susceptibility to BSI through the regulation of IFN-ß, providing new mechanisms for NS1-mediated manipulation of host immunity and BSI severity.


Assuntos
Infecções por Orthomyxoviridae/veterinária , Domínios PDZ/genética , Superinfecção/microbiologia , Proteínas não Estruturais Virais/genética , Animais , Cães , Regulação da Expressão Gênica , Células HEK293 , Interações Hospedeiro-Patógeno , Humanos , Imunidade Inata , Vírus da Influenza A Subtipo H1N1 , Vírus da Influenza A Subtipo H3N2 , Influenza Humana/imunologia , Interferon Tipo I/genética , Interferon Tipo I/imunologia , Interferon beta/genética , Interferon beta/imunologia , Células Madin Darby de Rim Canino , Infecções por Orthomyxoviridae/virologia , Replicação Viral
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA