RESUMO
The antibacterial activity of concrete plates loaded with various titania photocatalysts was investigated. The target in bacteria testing was Escherichia coli K12. The presence of photocatalysts in the concrete matrix at a dose of 10 wt.% improved the antibacterial properties, which became significant depending on the type of the added photocatalyst. Total inactivation of E. coli irradiated under artificial solar light was observed on the concrete plates loaded with the following photocatalysts: TiO2/N,CMeOH-300, TiO2/N,CEtOH-100, TiO2/N,CisoPrOH-100 and TiO2/N-300. The modified Hom disinfection kinetic model was found as a best-fit model for the obtained results. The presence of nitrogen and carbon in the photocatalysts structure, as well as crystallite size, surface area and porosity, contributed to the increase of antibacterial properties of concrete plates.
Assuntos
Luz , Fotoquímica/métodos , Titânio/química , Catálise , Escherichia coli/efeitos da radiação , Cinética , Titânio/efeitos da radiaçãoRESUMO
In this study, a new method of obtaining photoactive cements is presented. The goal was to obtain photoactive cements using a method that could reduce the production costs. In the study, an intermediate product from the production of titanium dioxide using the sulfate method, taken from the installation before the calcination process, was used to obtain photoactive cements. Laboratory conditions corresponding to introducing this amorphous TiO2 into cement clinker during its cooling were simulated. The study shows that the temperature from 300 to 800 °C and the time of amorphous TiO2 contact with the cement clinker within 30 min is sufficient to obtain a photoactive cement. The highest photocatalytic activity was obtained for the material with 5 wt.% TiO2 content, and the method used did not cause a significant decrease in the bending and compressive strength of the new photoactive cements. The obtained materials were characterized by determining the crystal size of the TiO2, the sulfur content and the photocatalytic activity during NO decomposition under UV radiation. The bending and compressive strength were measured. The influence of the addition of photocatalysts on the beginning and end of the setting time was also investigated.
RESUMO
Some species of slugs belonging to the genus Deroceras are invasive and cause severe agricultural damage. Despite extensive knowledge about their invasiveness, data on the molecular differentiation of these morphologically similar species are lacking. Here we present a molecular approach to identifying three closely related species of the genus Deroceras-D. agreste (L., 1758), D. reticulatum (O. F. Müller, 1774) and D. turcicum (Simroth, 1894) (Gastropoda: Eupulmonata: Agriolimacidae)-based on sequences of multiple molecular markers: cytochrome c oxidase subunit I (COI), cytochrome b (cyt-b), internal transcribed spacer 2 (ITS-2) and 28S ribosomal RNA (28S rRNA). We also provide detailed photomicrographs of the penis and penial gland of the three species, as it is the latter that holds the most important phenotypic characters for distinguishing between these taxa. Since identification of the studied species based solely on morphology is considered challenging, contributing a means of molecular differentiation will aid further ecological and biodiversity surveys of these important pests.
RESUMO
The studies of some mechanical properties and photocatalytic activity of new cements with photocatalytic activity are presented. The new building materials were obtained by addition of semi-product from titanium white production. Semi-product was calcined at 300 and 600 °C for one, three, and five hours and then this material was added to cement matrix in an amount of 1 and 3 wt.%. New materials were characterized by measuring the flexural and compressive strength and the initial and the final setting time. The photocatalytic activity was tested during NOx photooxidation. The cement with photocatalytic activity was also characterized by sulphur content measurements. The measurement of reflectance percentage of TiO2-loaded cements in comparison with pristine cement and TiO2 photocatalyst calcined at 600 °C were also performed. It should be emphasized that although in some cases, the addition of photocatalyst reduced the flexural and the compressive strength of the modified cements, these values were still within the norm PN-EN 197-1:2012. It was also found that the initial and the final setting time is connected with the crystal size of anatase, and the presence of larger crystals significantly delays of the setting time. This was probably caused by a water adsorption on the surface of anatase crystals.
RESUMO
In the study the self-cleaning properties of photoactive gypsum plasters are presented. The modified gypsum plasters were obtained by addition of 1 and 3 wt.% of nitrogen-modified titanium dioxide (TiO2/N) and 0.1, 0.3, and 0.5 wt.% of glass fiber. The self-cleaning ability of the obtained materials was tested during two dyes decomposition: Methylene Blue (MB) and Reactive Orange (RO). It was found that presence of glass fiber increased photocatalytic activity of modified gypsum plasters, which may be due to the fact glass fiber may act as ducts for light and transport it to sites screened by TiO2 or glass fiber can retard charge recombination. Moreover, unexpectedly the addition of glass fiber did not increase the mechanical properties of modified gypsum plasters, which may be because gypsum does not strongly adhere to the surface of glass fibers.
RESUMO
In this paper, studies of the mechanical properties and photocatalytic activity of new photoactive cement mortars are presented. The new building materials were obtained by the addition of 1, 3, and 5 wt % (based on the cement content) of nitrogen-modified titanium dioxide (TiO2/N) to the cement matrix. Photocatalytic active cement mortars were characterized by measuring the flexural and the compressive strength, the hydration heat, the zeta potential of the fresh state, and the initial and final setting time. Their photocatalytic activity was tested during NOx decomposition. The studies showed that TiO2/N gives the photoactivity of cement mortars during air purification with an additional positive effect on the mechanical properties of the hardened mortars. The addition of TiO2/N into the cement shortened the initial and final setting time, which was distinctly observed using 5 wt % of the photocatalyst in the cement matrix.