Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
Gels ; 8(5)2022 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-35621576

RESUMO

Despite cement's superior performance and inexpensive cost compared to other industrial materials, crack development remains a persistent problem in concrete. Given the comparatively low tensile strength, when cracks emerge, a pathway is created for gas and water to enter the cementitious matrix, resulting in steel reinforcement corrosion which compromises the durability of concrete. Superabsorbent hydrogels have been developed as a novel material for enhancing the characteristics of cementitious materials in which they have been demonstrated to decrease autogenous shrinkage and encourage self-healing. This study will detail the design and application of polyelectrolyte hydrogel particles as internal curing agents in concrete and provide new findings on relevant hydrogel-ion interactions. When hydrogel particles are mixed into concrete, they generate their stored water to fuel the curing reaction that results in less cracking and shrinkage, thereby prolonging the service life of the concrete. The interaction of hydrogels with cementitious materials is addressed in this study; the effect of hydrogels on the characteristics and self-healing of cementitious materials was also studied. Incorporating hydrogel particles into cement decreased mixture shrinkage while increasing the production of particular inorganic phases within the vacuum region formerly supplied by the swollen particle. In addition, considering the control paste, cement pastes containing hydrogels exhibited less autogenous shrinkage. The influence of hydrogels on autogenous shrinkage was found to be chemically dependent; the hydrogel with a delayed desorption rate displayed significantly low shrinkage in cement paste.

2.
Gels ; 8(8)2022 Jul 26.
Artigo em Inglês | MEDLINE | ID: mdl-35892727

RESUMO

While adding superabsorbent polymer hydrogel particles to fresh concrete admixtures, they act as internal curing agents that absorb and then release large amounts of water and reduce self-desiccation and volumetric shrinkage of cement that finally result in hardened concrete with increased durability and strength. The entrainment of microscopic air bubbles in the concrete paste can substantially improve the resistance of concrete. When the volume and distribution of entrained air are adequately managed, the microstructure is protected from the pressure produced by freezing water. This study addresses the design and application of hydrogel nanoparticles as internal curing agents in concrete, as well as new findings on crucial hydrogel-ion interactions. When mixed into concrete, hydrogel particles produce their stored water to power the curing reaction, resulting in less volumetric shrinkage and cracking and thereby prolonging the service life of concrete. The mechanical and swelling performance qualities of the hydrogel are very sensitive to multivalent cations found naturally in concrete mixes, such as aluminum and calcium. The interactions between hydrogel nanoparticles and alkaline cementitious mixes are described in this study, while emphasizing how the chemical structure and shape of the hydrogel particles regulate swelling behavior and internal curing efficiency to eliminate voids in the admixture. Moreover, in this study, an artificial neural network (ANN) was utilized to precisely and quickly analyze the test results of the compressive strength and durability of concrete. The addition of multivalent cations reduced swelling capacity and changed swelling kinetics, resulting in fast deswelling behavior and the creation of a mechanically stiff shell in certain hydrogel compositions. Notably, when hydrogel particles were added to a mixture, they reduced shrinkage while encouraged the creation of particular inorganic phases within the void area formerly held by the swelled particle.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA