Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Nano Lett ; 23(24): 11669-11677, 2023 Dec 27.
Artigo em Inglês | MEDLINE | ID: mdl-38060996

RESUMO

Supramolecular aggregation has provided the archetype concept to understand the variants in an emerging systems property. Herein, we have achieved the supramolecular assembly of carbon nanodots (CDs) for the first time and employ supramolecular aggregation to understand their alteration in photophysical properties. In detail, we have employed the CDs as a block to construct the supramolecular assembly of aggregates in the CDs' antisolvent of ethanol. The CD-based aggregates exhibit complex and organized morphologies with another long-wavelength excitation-dependent emission band. The experimental results and density functional theoretical calculations reveal that the supramolecular assembly of CDs can decrease the energy gap between the ground and excited states, contributing to the new long-wavelength excitation-dependent emission. The supramolecular aggregation can be employed as one universal strategy to manipulate and understand the luminescence of CDs. These findings cast new light to build the emerging systems and understand the light emission of CDs through supramolecular chemistry.

2.
Small ; 19(31): e2205916, 2023 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-36494158

RESUMO

Room-temperature phosphorescence has received much attention owing to its potential applications in information encryption and bioelectronics. However, the preparation of full-color single-component-derived phosphorescent materials remains a challenge. Herein, a facile in situ confining strategy is proposed to achieve full-color phosphorescent carbon dots (CDs) through rapid microwave-assisted carbonization of citric acid in NaOH. By tuning the mass ratio of citric acid and NaOH, the obtained CDs exhibit tunable phosphorescence wavelengths ranging from 483 to 635 nm and alterable lifetimes from 58 to 389 ms with a synthesis yield of up to 83.7% (>30 g per synthesis). Theoretical calculations and experimental results confirm that the formation of high-density ionic bonds between cations and CDs leads to efficient afterglow emission via the dissociation of CD arrangement, and the evolution of the aggregation state of CDs results in redshifted phosphorescence. These findings provide a strategy for the synthesis of new insights into achieving and manipulating room-temperature phosphorescent CDs, and prospect their applications in labeling and information encryption.

3.
Nat Commun ; 15(1): 2365, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38491012

RESUMO

It remains a challenge to obtain biocompatible afterglow materials with long emission wavelengths, durable lifetimes, and good water solubility. Herein we develop a photooxidation strategy to construct near-infrared afterglow carbon nanodots with an extra-long lifetime of up to 5.9 h, comparable to that of the well-known rare-earth or organic long-persistent luminescent materials. Intriguingly, size-dependent afterglow lifetime evolution from 3.4 to 5.9 h has been observed from the carbon nanodots systems in aqueous solution. With structural/ultrafast dynamics analysis and density functional theory simulations, we reveal that the persistent luminescence in carbon nanodots is activated by a photooxidation-induced dioxetane intermediate, which can slowly release and convert energy into luminous emission via the steric hindrance effect of nanoparticles. With the persistent near-infrared luminescence, tissue penetration depth of 20 mm can be achieved. Thanks to the high signal-to-background ratio, biological safety and cancer-specific targeting ability of carbon nanodots, ultralong-afterglow guided surgery has been successfully performed on mice model to remove tumor tissues accurately, demonstrating potential clinical applications. These results may facilitate the development of long-lasting luminescent materials for precision tumor resection.


Assuntos
Nanopartículas , Neoplasias , Animais , Camundongos , Luminescência
4.
Adv Mater ; 35(21): e2212286, 2023 May.
Artigo em Inglês | MEDLINE | ID: mdl-36840606

RESUMO

Time delay lighting offers an added period of buffer illumination for human eyes upon switching off the light. Long-lifetime emission from triplet excitons has outstanding potential, but the forbidden transition property due to the Pauli exclusion principle makes them dark, and it stays challenging to develop full-color and bright triplet excitons. Herein, triplet excitons emission from ultraviolet (UV) to near infrared (NIR) in carbon nanodots (CNDs) is achieved by confining multicolor CNDs emitters in NaCNO crystal. NaCNO crystal can isolate the CNDs, triplet excitons quenching caused by the excited state electrons aggregation induced energy transfer is suppressed, and the confinement crystal can furthermore promote phosphorescence of the CNDs by inhibiting the dissipation of the triplet excitons due to non-radiative transition. The phosphorescence from radiative recombination of triplet excitons in the CNDs covers the spectral region from 300 nm (UV) to 800 nm (NIR), the corresponding lifetimes can reach 15.8, 818.0, 239.7, 168.4, 426.4, and 127.6 ms. Furthermore, the eco-friendly luminescent lampshades are designed based on the multicolor phosphorescent CNDs, time delay light-emitting diodes are thus demonstrated. The findings will motivate new opportunities for the development of UV to NIR phosphorescent CNDs and time delay lighting applications.

5.
Light Sci Appl ; 12(1): 104, 2023 May 04.
Artigo em Inglês | MEDLINE | ID: mdl-37142602

RESUMO

Advanced antibacterial technologies are needed to counter the rapid emergence of drug-resistant bacteria. Image-guided therapy is one of the most promising strategies for efficiently and accurately curing bacterial infections. Herein, a chemiluminescence (CL)-dynamic/guided antibacteria (CDGA) with multiple reactive oxygen species (ROS) generation capacity and chemiexcited near-infrared emission has been designed for the precise theranostics of bacterial infection by employing near-infrared emissive carbon nanodots (CDs) and peroxalate as CL fuels. Mechanistically, hydrogen peroxide generated in the bacterial microenvironment can trigger the chemically initiated electron exchange between CDs and energy-riched intermediate originated from the oxidized peroxalate, enabling bacterial induced inflammation imaging. Meanwhile, type I/II photochemical ROS production and type III ultrafast charge transfer from CDs under the self-illumination can inhibit the bacteria proliferation efficiently. The potential clinical utility of CDGA is further demonstrated in bacteria infected mice trauma model. The self-illuminating CDGA exhibits an excellent in vivo imaging quality in early detecting wound infections and internal inflammation caused by bacteria, and further are proven as efficient broad-spectrum antibacterial nanomedicines without drug-resistance, whose sterilizing rate is up to 99.99%.

6.
Light Sci Appl ; 11(1): 146, 2022 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-35595762

RESUMO

Phosphorescent carbon nanodots (CNDs) have generated enormous interest recently, and the CND phosphorescence is usually located in the visible region, while ultraviolet (UV) phosphorescent CNDs have not been reported thus far. Herein, the UV phosphorescence of CNDs was achieved by decreasing conjugation size and in-situ spatial confinement in a NaCNO crystal. The electron transition from the px to the sp2 orbit of the N atoms within the CNDs can generate one-unit orbital angular momentum, providing a driving force for the triplet excitons population of the CNDs. The confinement caused by the NaCNO crystal reduces the energy dissipation paths of the generated triplet excitons. By further tailoring the size of the CNDs, the phosphorescence wavelength can be tuned to 348 nm, and the room temperature lifetime of the CNDs can reach 15.8 ms. As a demonstration, the UV phosphorescent CNDs were used for inactivating gram-negative and gram-positive bacteria through the emission of their high-energy photons over a long duration, and the resulting antibacterial efficiency reached over 99.9%. This work provides a rational design strategy for UV phosphorescent CNDs and demonstrates their novel antibacterial applications.

7.
Mater Horiz ; 9(10): 2533-2541, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-35829660

RESUMO

Chemiluminescence (CL), as one class of luminescence driven by chemical reaction, exhibits obvious temperature-dependence in its light emission process. Herein, temperature-dependent CL emission of carbon nanodots (CDs) in the chemical reaction of peroxalate and hydrogen peroxide is demonstrated and temperature imaging based on the temperature-dependent CL has been established for the first time. In detail, the temperature-dependent CL emission of CDs in the chemical reaction of peroxalate and hydrogen peroxide is observed, and the linear relationship between the CL intensity and temperature is demonstrated in both the CL solution and film, enabling their applications in temperature sensing and imaging capabilities. The increase of the CL emission with temperature can be attributed to the accelerated electron exchange between the CDs and intermediate generated in the peroxalate system. Meter-scale chemiluminescent CD films have been constructed. The CL sensor based on the films presents a high spatial resolution of 0.4 mm and an outstanding sensitivity of 0.08 °C-1, which is amongst the best values for the thermographic luminophores. With the unique temperature response and flexible properties, non-planar, meter-scale and sensitive palm temperature imaging has been achieved. These findings present new opportunities for designing CL-based temperature probes and thermography.

8.
J Phys Chem Lett ; 12(16): 4079-4084, 2021 Apr 29.
Artigo em Inglês | MEDLINE | ID: mdl-33881881

RESUMO

Herein, the negative photoconductivity (NPC) effect has been observed in nanodiamonds (NDs) for the first time, and with illumination under a 660 nm laser lamp, the conductivity of the NDs decreases significantly. The NPC effect has been attributed to the trapping of carriers by the absorbed water molecules on the ND surfaces. A humidity sensor has been constructed based on the NPC effect of the NDs, and the sensitivity of the sensor can reach 106%, which is the highest value ever reported for carbon-based humidity sensors.

9.
Adv Sci (Weinh) ; 7(8): 1903525, 2020 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-32328432

RESUMO

Reactive oxygen species (ROS) are generated in the body and related to many pathophysiological processes. Hence, detection of ROS is indispensable in understanding, diagnosis, and treatment of many diseases. Here, near-infrared (NIR) chemiluminescent (CL) carbon nanodots (CDs) are fabricated for the first time and their CL quantum yield can reach 9.98 × 10-3 einstein mol-1, which is the highest value ever reported for CDs until now. Nanointegration of NIR CDs and peroxalate (P-CDs) through the bridging effect of amphiphilic triblock copolymer can serve as turn-on probes for the detection and imaging of hydrogen peroxide (H2O2). Considering high efficiency and large penetration depth of NIR photons, the P-CDs are employed in bioimaging H2O2 in vitro and in vivo, and the detection limit can reach 5 × 10-9 m, among the best reported of CDs-based sensors. Moreover, imaging of inflammatory H2O2 in a mouse model of peritonitis is achieved by employing the P-CDs as sensors. The results may provide a clue for the diagnosis and treatment of inflammation or cancers employing CL CDs as sensors.

10.
Adv Sci (Weinh) ; 6(11): 1802331, 2019 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-31179212

RESUMO

The various luminescent properties of carbon nanodots (CDs) reveal fascinating applications in several areas. Here, bright and multicolor chemiluminescence (CL) is realized from CDs, whose CL quantum yield can be optimized by adjusting the energy level alignment between the CDs and 1,2-dioxetanedione intermediate generated from the reaction of peroxalate and hydrogen peroxide. A CL quantum yield of 9.32 × 10-3 Einsteins mol-1, maximal luminance of 3.28 cd m-2, and lifetime of 186.4 s are achieved in red CDs, all of which are the best values ever reported for CDs. As a proof-of-concept prototype, a high-quality information encryption strategy is established via CD based CL imaging techniques by virtue of the high brightness and multicolor CL.

11.
Nanoscale ; 10(20): 9602-9607, 2018 May 24.
Artigo em Inglês | MEDLINE | ID: mdl-29748685

RESUMO

Van der Waals heterostructures (vdWHs) have opened new avenues for fundamental scientific studies and design of novel devices. Although numerous reports have demonstrated vdWH optoelectronic devices, no report on vdWH lasers can be found to date. In this paper we demonstrated electrically driven vdWH lasers for the first time, and the lasers were realized from ZnO microwire/MgO/p-GaN structures. By coating Ag films on the top surfaces of the ZnO microwires, the current injection and lasing directionality of the vdWH lasers have been improved significantly, and this improvement can be attributed to the high conductivity and reflectivity of the Ag film. The output power of the device can reach 2.41 µW under 14 mA drive current, which is among the highest values ever reported for ZnO based lasers. Our results may provide a promising way to electrically pumped lasers based on micro/nano-structures.

12.
Nanoscale Res Lett ; 12(1): 447, 2017 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-28687039

RESUMO

Hydrogen peroxide (H2O2) is an important product of oxidase-based enzymatic reactions, such as glucose/glucose oxidase (GOD) reaction. Therefore, the probing of generated H2O2 for achieving the detection of various carbohydrates and their oxidases is very significative. Herein, we report one kind of dual-emission carbon nanodots (CDs) that can serve as novel dual-mode nanosensors with both fluorometric and colorimetric output for the selective detection of H2O2. The dual-model nanosensors are established only by the undecorated dual-emission CDs, where significant fluorometric and colorimetric changes are observed with the addition of different concentrations of H2O2 in the CD solution, which benefit to the achievement of the naked-eye detection for H2O2. The mechanism of the nanosensors can be attributed to the fact that the external chemical stimuli like hydroxyl radicals from H2O2 bring about the change of surface properties and the aggregation of CDs, which dominate the emission and absorption of CDs. The constructed dual-mode nanosensors exhibit good biocompatibility and high selectivity toward H2O2 with a linear detection range spanning from 0.05 to 0.5 M and allow the detection of H2O2 as low as 14 mM.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA