RESUMO
This study investigates the impact of radio frequency (RF) heat treatment on heat and mass transfer during the hot air drying of jujube slices. Experiments were conducted at different drying stages, comparing single-hot air drying with hot air combined with RF treatment. Numerical models using COMSOL Multiphysics® were developed to simulate the process, and the results were compared to validate the models. The maximum difference between the simulated value of the center temperature and the experimental value was 6.9 °C, while the minimum difference was 0.1 °C. The maximum difference in average surface temperature was 1.7 °C, with a minimum of 0.3 °C. The determination coefficient (R2) between the simulated experimental values of HA and the early (E-HA + RF), middle (M-HA + RF), and later (L-HA + RF) groups was 0.964, 0.987, 0.961, and 0.977, respectively. The study demonstrates that RF treatment reduces drying time, enhances internal temperature, promotes consistent heat and mass transfer, and accelerates moisture diffusion in jujube slices. Furthermore, the later the RF treatment is applied, the greater the increase in internal temperature and the faster the decrease in moisture content. This research elucidates the mechanism by which RF heat treatment influences heat transfer in hot air-dried jujube slices.
RESUMO
This study combined an artificial neural network (ANN) with a genetic algorithm (GA) to obtain the model and optimal process parameters of drying-assisted walnut breaking. Walnuts were dried at different IR temperatures (40 °C, 45 °C, 50 °C, and 55 °C) and air velocities (1, 2, 3, and 4 m/s) to different moisture contents (10%, 15%, 20%, and 25%) by using air-impingement technology. Subsequently, the dried walnuts were broken in different loading directions (sutural, longitudinal, and vertical). The drying time (DT), specific energy consumption (SEC), high kernel rate (HR), whole kernel rate (WR), and shell-breaking rate (SR) were determined as response variables. An ANN optimized by a GA was applied to simulate the influence of IR temperature, air velocity, moisture content, and loading direction on the five response variables, from which the objective functions of DT, SEC, HR, WR, and SR were developed. A GA was applied for the simultaneous maximization of HR, WR, and SR and minimization of DT and SEC to determine the optimized process parameters. The ANN model had a satisfactory prediction ability, with the coefficients of determination of 0.996, 0.998, 0.990, 0.991, and 0.993 for DT, SEC, HR, WR, and SR, respectively. The optimized process parameters were found to be 54.9 °C of IR temperature, 3.66 m/s of air velocity, 10.9% of moisture content, and vertical loading direction. The model combining an ANN and a GA was proven to be an effective method for predicting and optimizing the process parameters of walnut breaking. The predicted values under optimized process parameters fitted the experimental data well, with a low relative error value of 2.51-3.96%. This study can help improve the quality of walnut breaking, processing efficiency, and energy conservation. The ANN modeling and GA multiobjective optimization method developed in this study provide references for the process optimization of walnut and other similar commodities.
RESUMO
Jujubes have been favored by consumers because of their rich nutrition and wide use. Hot air drying has been commercially and typically used to prolong shelf life and acquire the dried produce. Jujube slices were dried with hot air combined with radio frequency (RF) at different drying stages, namely, early (0-2 h, E-HA + RF), middle (2-4 h, M-HA + RF), later (4-6 h, L-HA + RF), and whole (0-6 h, W-HA + RF) stages. This study aimed to investigate the effects of different RF application stages on the microstructure, moisture absorption rate, color, and ascorbic acid of jujube slices. Compared with the hot air drying (HA) group, the E-HA + RF group obtained the best results among the experimental groups because it reduced the cells with a roundness of less than 0.4 by 5%. Moreover, the M-HA + RF group showed better results than those of other groups, with an 18.6% and 48.8% reduction in cells for a cross-sectional area less than 200 µm2 and a perimeter less than 25 µm, respectively. The minimum total color difference (ΔE = 9.21 ± 0.31) and maximum retention of ascorbic acid (285.06 mg/100 g) were also observed in this group. Therefore, the method of hot air drying assisted by phased RF is viable in the drying industry to improve the quality of dried agricultural products and reduce energy consumption.