Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Transl Med ; 15(1): 107, 2017 05 19.
Artigo em Inglês | MEDLINE | ID: mdl-28526045

RESUMO

BACKGROUND: Standardized animal-free components are required for manufacturing cell-based medicinal products. Human platelet concentrates are sources of growth factors for cell expansion but such products are characterized by undesired variability. Pooling together single-donor products improves consistency, but the minimal pool sample size was never determined. METHODS: Supernatant rich in growth factors (SRGF) derived from n = 44 single-donor platelet-apheresis was obtained by CaCl2 addition. n = 10 growth factor concentrations were measured. The data matrix was analyzed by a novel statistical algorithm programmed to create 500 groups of random data from single-donor SRGF and to repeat this task increasing group statistical sample size from n = 2 to n = 20. Thereafter, in created groups (n = 9500), the software calculated means for each growth factor and, matching groups with the same sample size, the software retrieved the percent coefficient of variation (CV) between calculated means. A 20% CV was defined as threshold. For validation, we assessed the CV of concentrations measured in n = 10 pools manufactured according to algorithm results. Finally, we compared growth rate and differentiation potential of adipose-derived stromal/stem cells (ASC) expanded by separate SRGF pools. RESULTS: Growth factor concentrations in single-donor SRGF were characterized by high variability (mean (pg/ml)-CV); VEGF: 950-81.4; FGF-b: 27-74.6; PDGF-AA: 7883-28.8; PDGF-AB: 107834-32.5; PDGF-BB: 11142-48.4; Endostatin: 305034-16.2; Angiostatin: 197284-32.9; TGF-ß1: 68382-53.7; IGF-I: 70876-38.3; EGF: 2411-30.2). In silico performed analysis suggested that pooling n = 16 single-donor SRGF reduced CV below 20%. Concentrations measured in 10 pools of n = 16 single SRGF were not different from mean values measured in single SRGF, but the CV was reduced to or below the threshold. Separate SRGF pools failed to differently affect ASC growth rate (slope pool A = 0.6; R2 = 0.99; slope pool B = 0.7; R2 0.99) or differentiation potential. DISCUSSION: Results deriving from our algorithm and from validation utilizing real SRGF pools demonstrated that pooling n = 16 single-donor SRGF products can ameliorate variability of final growth factor concentrations. Different pools of n = 16 single donor SRGF displayed consitent capability to modulate growth and differentiation potential of expanded ASC. Increasing the pool size should not further improve product composition.


Assuntos
Algoritmos , Plaquetas/metabolismo , Terapia Baseada em Transplante de Células e Tecidos/normas , Ensaios Clínicos como Assunto , Feminino , Humanos , Peptídeos e Proteínas de Sinalização Intercelular/metabolismo , Pessoa de Meia-Idade , Plasma Rico em Plaquetas/metabolismo , Padrões de Referência
2.
Stem Cell Res Ther ; 9(1): 130, 2018 05 11.
Artigo em Inglês | MEDLINE | ID: mdl-29751821

RESUMO

BACKGROUND: The stromal vascular fraction (SVF) derived from adipose tissue contains adipose-derived stromal/stem cells (ASC) and can be used for regenerative applications. Thus, a validated protocol for SVF isolation, freezing, and thawing is required to manage product administration. To comply with Good Manufacturing Practice (GMP), fetal bovine serum (FBS), used to expand ASC in vitro, could be replaced by growth factors from platelet concentrates. METHODS: Throughout each protocol, GMP-compliant reagents and devices were used. SVF cells were isolated from lipoaspirates by a standardized enzymatic protocol. Cells were cryopreserved in solutions containing different albumin or serum and dimethylsulfoxide (DMSO) concentrations. Before and after cryopreservation, we analyzed: cell viability (by Trypan blue); immunophenotype (by flow cytometry); colony-forming unit-fibroblast (CFU-F) formation; and differentiation potential. ASC, seeded at different densities, were expanded in presence of 10% FBS or 5% supernatant rich in growth factors (SRGF) from platelets. The differentiation potential and cell transformation grade were tested in expanded ASC. RESULTS: We demonstrated that SVF can be obtained with a consistent yield (about 185 × 103 cells/ml lipoaspirate) and viability (about 82%). Lipoaspirate manipulation after overnight storage at +4 °C reduced cell viability (-11.6%). The relative abundance of ASC (CD34+CD45-CD31-) and endothelial precursors (CD34+CD45-CD31+) in the SVF product was about 59% and 42%, respectively. A period of 2 months cryostorage in autologous serum with added DMSO minimally affected post-thaw SVF cell viability as well as clonogenic and differentiation potentials. Viability was negatively affected when SVF was frozen at a cell concentration below 1.3 × 106 cells/ml. Cell viability was not significantly affected after a freezing period of 1 year. Independent of seeding density, ASC cultured in 5% SRGF exhibited higher growth rates when compared with 10% FBS. ASC expanded in both media showed unaltered identity (by flow cytometry) and were exempt from genetic lesions. Both 5% SRGF- and 10% FBS-expanded ASC efficiently differentiated to adipocytes, osteocytes, and chondrocytes. CONCLUSIONS: This paper reports a GMP-compliant approach for freezing SVF cells isolated from adipose tissue by a standardized protocol. Moreover, an ASC expansion method in controlled culture conditions and without involvement of animal-derived additives was reported.


Assuntos
Tecido Adiposo/metabolismo , Criopreservação/métodos , Tecido Adiposo/citologia , Diferenciação Celular , Células Cultivadas , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA