Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 26
Filtrar
1.
Sensors (Basel) ; 21(11)2021 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-34206130

RESUMO

Light Detection and Ranging (LiDAR) is a 3D imaging technique, widely used in many applications such as augmented reality, automotive, machine vision, spacecraft navigation and landing. Achieving long-ranges and high-speed, most of all in outdoor applications with strong solar background illumination, are challenging requirements. In the introduction we review different 3D-ranging techniques (stereo-vision, projection with structured light, pulsed-LiDAR, amplitude-modulated continuous-wave LiDAR, frequency-modulated continuous-wave interferometry), illumination schemes (single point and blade scanning, flash-LiDAR) and time-resolved detectors for LiDAR (EM-CCD, I-CCD, APD, SPAD, SiPM). Then, we provide an extensive review of silicon- single photon avalanche diode (SPAD)-based LiDAR detectors (both commercial products and research prototypes) analyzing how each architecture faces the main challenges of LiDAR (i.e., long ranges, centimeter resolution, large field-of-view and high angular resolution, high operation speed, background immunity, eye-safety and multi-camera operation). Recent progresses in 3D stacking technologies provided an important step forward in SPAD array development, allowing to reach smaller pitch, higher pixel count and more complex processing electronics. In the conclusions, we provide some guidelines for the design of next generation SPAD-LiDAR detectors.


Assuntos
Fótons , Silício , Eletrônica , Imageamento Tridimensional , Iluminação
2.
Sensors (Basel) ; 21(13)2021 Jun 30.
Artigo em Inglês | MEDLINE | ID: mdl-34209114

RESUMO

Time-of-Flight (TOF) based Light Detection and Ranging (LiDAR) is a widespread technique for distance measurements in both single-spot depth ranging and 3D mapping. Single Photon Avalanche Diode (SPAD) detectors provide single-photon sensitivity and allow in-pixel integration of a Time-to-Digital Converter (TDC) to measure the TOF of single-photons. From the repetitive acquisition of photons returning from multiple laser shots, it is possible to accumulate a TOF histogram, so as to identify the laser pulse return from unwelcome ambient light and compute the desired distance information. In order to properly predict the TOF histogram distribution and design each component of the LiDAR system, from SPAD to TDC and histogram processing, we present a detailed statistical modelling of the acquisition chain and we show the perfect matching with Monte Carlo simulations in very different operating conditions and very high background levels. We take into consideration SPAD non-idealities such as hold-off time, afterpulsing, and crosstalk, and we show the heavy pile-up distortion in case of high background. Moreover, we also model non-idealities of timing electronics chain, namely, TDC dead-time, limited number of storage cells for TOF data, and TDC sharing. Eventually, we show how the exploit the modelling to reversely extract the original LiDAR return signal from the distorted measured TOF data in different operating conditions.


Assuntos
Modelos Estatísticos , Fótons , Eletrônica , Luz , Método de Monte Carlo
3.
Sensors (Basel) ; 21(9)2021 Apr 22.
Artigo em Inglês | MEDLINE | ID: mdl-33922102

RESUMO

Light Detection and Ranging (LiDAR) is a widespread technique for 3D ranging and has widespread use in most automated systems that must interact with the external environment, for instance in industrial and security applications. In this work, we study a novel architecture for Single Photon Avalanche Diode (SPAD) arrays suitable for handheld single point rangefinders, which is aimed at the identification of the objects' position in the presence of strong ambient background illumination. The system will be developed for an industrial environment, and the array targets a distance range of about 1 m and a precision of few centimeters. Since the laser spot illuminates only a small portion of the array, while all pixels are exposed to background illumination, we propose and validate through Monte Carlo simulations a novel architecture for the identification of the pixels illuminated by the laser spot to perform an adaptive laser spot tracking and a smart sharing of the timing electronics, thus significantly improving the accuracy of the distance measurement. Such a novel architecture represents a robust and effective approach to develop SPAD arrays for industrial applications with extremely high background illumination.

4.
Appl Opt ; 59(14): 4488-4498, 2020 May 10.
Artigo em Inglês | MEDLINE | ID: mdl-32400429

RESUMO

Large-format single-photon avalanche diode (SPAD) arrays often suffer from low fill-factors-the ratio of the active area to the overall pixel area. The detection efficiency of these detector arrays can be vastly increased with the integration of microlens arrays designed to concentrate incident light onto the active areas and may be refractive or diffractive in nature. The ability of diffractive optical elements (DOEs) to efficiently cover a square or rectangular pixel, combined with their capability of working as fast lenses (i.e., ∼f/3) makes them versatile and practical lens designs for use in sparse photon applications using microscale, large-format detector arrays. Binary-mask-based photolithography was employed to fabricate fast diffractive microlenses for two designs of 32×32 SPAD detector arrays, each design having a different pixel pitch and fill-factor. A spectral characterization of the lenses is performed, as well as analysis of performance under different illumination conditions from wide- to narrow-angle illumination (i.e., f/2 to f/22 optics). The performance of the microlenses presented exceeds previous designs in terms of both concentration factor (i.e., increase in light collection capability) and lens speed. Concentration factors greater than 33× are achieved for focal lengths in the substrate material as short as 190µm, representing a microlens f-number of 3.8 and providing a focal spot diameter of <4µm. These results were achieved while retaining an extremely high degree of performance uniformity across the 1024 devices in each case, which demonstrates the significant benefits to be gained by the implementation of DOEs as part of an integrated detector system using SPAD arrays with very small active areas.

5.
Sensors (Basel) ; 20(21)2020 Oct 27.
Artigo em Inglês | MEDLINE | ID: mdl-33120975

RESUMO

The problem of performing remote biomedical measurements using just a video stream of a subject face is called remote photoplethysmography (rPPG). The aim of this work is to propose a novel method able to perform rPPG using single-photon avalanche diode (SPAD) cameras. These are extremely accurate cameras able to detect even a single photon and are already used in many other applications. Moreover, a novel method that mixes deep learning and traditional signal analysis is proposed in order to extract and study the pulse signal. Experimental results show that this system achieves accurate results in the estimation of biomedical information such as heart rate, respiration rate, and tachogram. Lastly, thanks to the adoption of the deep learning segmentation method and dependability checks, this method could be adopted in non-ideal working conditions-for example, in the presence of partial facial occlusions.


Assuntos
Biometria , Aprendizado Profundo , Fotopletismografia , Processamento de Sinais Assistido por Computador , Algoritmos , Face , Frequência Cardíaca , Humanos , Taxa Respiratória
6.
Sensors (Basel) ; 19(12)2019 Jun 13.
Artigo em Inglês | MEDLINE | ID: mdl-31200569

RESUMO

Single Photon Avalanche Diode (SPAD) arrays are increasingly exploited and have demonstrated potential in biochemical and biomedical research, both for imaging and single-point spectroscopy applications. In this study, we explore the application of SPADs together with fiber-optic-based delivery and collection geometry to realize fast and simultaneous single-point time-, spectral-, and depth-resolved fluorescence measurements at 375 nm excitation light. Spectral information is encoded across the columns of the array through grating-based dispersion, while depth information is encoded across the rows thanks to a linear arrangement of probe collecting fibers. The initial characterization and validation were realized against layered fluorescent agarose-based phantoms. To verify the practicality and feasibility of this approach in biological specimens, we measured the fluorescence signature of formalin-fixed rabbit aorta samples derived from an animal model of atherosclerosis. The initial results demonstrate that this detection configuration can report fluorescence spectral and lifetime contrast originating at different depths within the specimens. We believe that our optical scheme, based on SPAD array detectors and fiber-optic probes, constitute a powerful and versatile approach for the deployment of multidimensional fluorescence spectroscopy in clinical applications where information from deeper tissue layers is important for diagnosis.

7.
Sensors (Basel) ; 18(11)2018 Nov 03.
Artigo em Inglês | MEDLINE | ID: mdl-30400328

RESUMO

Silicon photomultipliers (SiPMs) have improved significantly over the last years and now are widely employed in many different applications. However, the custom fabrication technologies exploited for commercial SiPMs do not allow the integration of any additional electronics, e.g., on-chip readout and analog (or digital) processing circuitry. In this paper, we present the design and characterization of two microelectronics-compatible SiPMs fabricated in a 0.16 µm⁻BCD (Bipolar-CMOS-DMOS) technology, with 0.67 mm × 0.67 mm total area, 10 × 10 square pixels and 53% fill-factor (FF). The photon detection efficiency (PDE) surpasses 33% (FF included), with a dark-count rate (DCR) of 330 kcps. Although DCR density is worse than that of state-of-the-art SiPMs, the proposed fabrication technology enables the development of cost-effective systems-on-chip (SoC) based on SiPM detectors. Furthermore, correlated noise components, i.e., afterpulsing and optical crosstalk, and photon timing response are comparable to those of best-in-class commercial SiPMs.

8.
Opt Express ; 23(19): 24962-73, 2015 Sep 21.
Artigo em Inglês | MEDLINE | ID: mdl-26406696

RESUMO

We developed a system for acquiring 3D depth-resolved maps by measuring the Time-of-Flight (TOF) of single photons. It is based on a CMOS 32 × 32 array of Single-Photon Avalanche Diodes (SPADs) and 350 ps resolution Time-to-Digital Converters (TDCs) into each pixel, able to provide photon-counting or photon-timing frames every 10 µs. We show how such a system can be used to scan large scenes in just hundreds of milliseconds. Moreover, we show how to exploit TDC unwarping and refolding for improving signal-to-noise ratio and extending the full-scale depth range. Additionally, we merged 2D and 3D information in a single image, for easing object recognition and tracking.

9.
Opt Express ; 23(26): 33777-91, 2015 Dec 28.
Artigo em Inglês | MEDLINE | ID: mdl-26832039

RESUMO

Single-photon avalanche diode (SPAD) detector arrays generally suffer from having a low fill-factor, in which the photo-sensitive area of each pixel is small compared to the overall area of the pixel. This paper describes the integration of different configurations of high efficiency diffractive optical microlens arrays onto a 32 × 32 SPAD array, fabricated using a 0.35 µm CMOS technology process. The characterization of SPAD arrays with integrated microlens arrays is reported over the spectral range of 500-900 nm, and a range of f-numbers from f/2 to f/22. We report an average concentration factor of 15 measured for the entire SPAD array with integrated microlens array. The integrated SPAD and microlens array demonstrated a very high uniformity in overall efficiency.

10.
Nat Commun ; 14(1): 3677, 2023 Jun 21.
Artigo em Inglês | MEDLINE | ID: mdl-37344498

RESUMO

The ability to form reconstructions beyond line-of-sight view could be transformative in a variety of fields, including search and rescue, autonomous vehicle navigation, and reconnaissance. Most existing active non-line-of-sight (NLOS) imaging methods use data collection steps in which a pulsed laser is directed at several points on a relay surface, one at a time. The prevailing approaches include raster scanning of a rectangular grid on a vertical wall opposite the volume of interest to generate a collection of confocal measurements. These and a recent method that uses a horizontal relay surface are inherently limited by the need for laser scanning. Methods that avoid laser scanning to operate in a snapshot mode are limited to treating the hidden scene of interest as one or two point targets. In this work, based on more complete optical response modeling yet still without multiple illumination positions, we demonstrate accurate reconstructions of foreground objects while also introducing the capability of mapping the stationary scenery behind moving objects. The ability to count, localize, and characterize the sizes of hidden objects, combined with mapping of the stationary hidden scene, could greatly improve indoor situational awareness in a variety of applications.

11.
Opt Lett ; 37(14): 2877-9, 2012 Jul 15.
Artigo em Inglês | MEDLINE | ID: mdl-22825164

RESUMO

We demonstrate interstitial diffuse optical time-of-fight spectroscopy based on a single fiber for both light delivery and detection. Detector saturation due to the massive short-time reflection is avoided by ultrafast gating of a single photon avalanche diode. We show that the effects of scattering and absorption are separable and that absorption can be assessed independently of scattering. Measurements on calibrated liquid phantoms and subsequent Monte Carlo-based evaluation illustrate that absorption coefficients can be accurately assessed over a wide range of medically relevant optical properties. Our findings pave the way to simplified and less invasive interstitial in vivo spectroscopy.


Assuntos
Fibras Ópticas , Análise Espectral/instrumentação , Absorção , Método de Monte Carlo , Espalhamento de Radiação
12.
Opt Express ; 19(11): 10735-46, 2011 May 23.
Artigo em Inglês | MEDLINE | ID: mdl-21643330

RESUMO

In many time-domain single-photon measurements, wide dynamic range (more than 5 orders of magnitude) is required in short acquisition time (few seconds). We report on the results of a novel technique based on a time-gated Single-Photon Avalanche Diode (SPAD) able to increase the dynamic range of optical investigations. The optical signal is acquired only in well-defined time intervals. Very fast 200-ps gate-ON transition is used to avoid the undesired strong signal, which can saturate the detector, hide the fainter useful signal and reduce the dynamic range. In experimental measurements, we obtained a dynamic range approaching 8 decades in few minutes of acquisition.


Assuntos
Óptica e Fotônica , Fótons , Espectrometria de Fluorescência/métodos , Artefatos , Fluorescência , Processamento de Imagem Assistida por Computador/métodos , Lasers , Fibras Ópticas , Silício , Espectrofotometria/métodos , Fatores de Tempo , Tomografia Computadorizada de Emissão/métodos
13.
Neurophotonics ; 8(1): 015006, 2021 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-33628861

RESUMO

Significance: This study is a preliminary step toward the identification of a noninvasive and reliable tool for monitoring the presence and progress of gaiting dysfunctions. Aim: We present the results of a pilot study for monitoring the motor cortex hemodynamic response function (HRF) in freely walking subjects, with time-domain functional near-infrared spectroscopy (TD fNIRS). Approach: A compact and wearable single-channel TD fNIRS oximeter was employed. The lower limb motor cortex area of three healthy subjects was monitored while performing two different freely moving gaiting tasks: forward and backward walking. Results: The time course of oxygenated and deoxygenated hemoglobin was measured during the different walking tasks. Brain motor cortex hemodynamic activations have been analyzed throughout an adaptive HRF fitting procedure, showing a greater involvement of motor area in the backward walking task. By comparison with the HRF obtained in a finger-tapping task performed in a still condition, we excluded any effect of motion artifacts in the gaiting tasks. Conclusions: For the first time to our knowledge, the hemodynamic motor cortex response was measured by TD fNIRS during natural, freely walking exercises. The cortical response during forward and backward walking shows differences, possibly related to the diverse involvement of the motor cortex in the two types of gaiting.

14.
Phys Rev Lett ; 105(16): 163602, 2010 Oct 15.
Artigo em Inglês | MEDLINE | ID: mdl-21230971

RESUMO

The Rayleigh diffraction bound sets the minimum separation for two point objects to be distinguishable in a conventional imaging system. We demonstrate sub-Rayleigh resolution by scanning a focused beam--in an arbitrary, object-covering pattern that is unknown to the imager--and using N-photon photodetection implemented with a single-photon avalanche detector array. Experiments show resolution improvement by a factor ∼(N-N(max))(½) beyond the Rayleigh bound, where N(max) is the maximum average detected photon number in the image, in good agreement with theory.

15.
Biomed Opt Express ; 11(10): 5934-5949, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-33149997

RESUMO

We present a wearable time-domain near infrared spectroscopy (TD-NIRS) system (two wavelengths, one detection channel), which fits in a backpack and performs real-time hemodynamic measurements on the brain and muscle tissues of freely moving subjects. It can provide concentration values of oxygenated hemoglobin (O2Hb), deoxygenated hemoglobin (HHb), total hemoglobin (tHb = O2Hb + HHb) and tissue oxygen saturation (StO2). The system is battery-operated and can be wirelessly controlled. By following established characterization protocols for performance assessment of diffuse optics instruments, we achieved results comparable with state-of-the-art research-grade TD-NIRS systems. We also performed in-vivo measurements such as finger tapping (motor cortex monitoring), breath holding (prefrontal cortex monitoring and forearm muscle monitoring), and outdoor bike riding (vastus lateralis muscle monitoring), in order to test the system capabilities in evaluating both muscle and brain hemodynamics.

16.
Sci Rep ; 10(1): 8116, 2020 05 15.
Artigo em Inglês | MEDLINE | ID: mdl-32415224

RESUMO

Autofluorescence spectroscopy has emerged in recent years as a powerful tool to report label-free contrast between normal and diseased tissues, both in vivo and ex vivo. We report the development of an instrument employing Single Photon Avalanche Diode (SPAD) arrays to realize real-time multispectral autofluorescence lifetime imaging at a macroscopic scale using handheld single-point fibre optic probes, under bright background conditions. At the detection end, the fluorescence signal is passed through a transmission grating and both spectral and temporal information are encoded in the SPAD array. This configuration allows interrogation in the spectral range of interest in real time. Spatial information is provided by an external camera together with a guiding beam that provides a visual reference that is tracked in real-time. Through fast image processing and data analysis, fluorescence lifetime maps are augmented on white light images to provide feedback of the measurements in real-time. We validate and demonstrate the practicality of this technique in the reference fluorophores and in articular cartilage samples mimicking the degradation that occurs in osteoarthritis. Our results demonstrate that SPADs together with fibre probes can offer means to report autofluorescence spectral and lifetime contrast in real-time and thus are suitable candidates for in situ tissue diagnostics.

17.
Opt Express ; 16(3): 2232-44, 2008 Feb 04.
Artigo em Inglês | MEDLINE | ID: mdl-18542303

RESUMO

We present a compact 50 microm x 100 microm cell for single-photon detection, based on a new circuitry monolithically integrated together with a 20 microm-diameter CMOS Single-Photon Avalanche Diode (SPAD). The detector quenching relies on a novel mechanism based on starving the avalanche current till quenching through a variable-load (VLQC, Variable- Load Quenching Circuit). Fabricated in a standard 0.35 microm CMOS technology, the topology allows a SPAD bias voltage higher than the chip supply voltage to be used. Moreover it preserves the advantages of active quenching circuits, in terms of hold-off capability (from 40 ns to 2 micros) and fast reset (

Assuntos
Eletrônica/instrumentação , Fotometria/instrumentação , Fótons , Radiometria/instrumentação , Semicondutores , Transdutores , Desenho de Equipamento , Análise de Falha de Equipamento , Luz , Doses de Radiação , Radiometria/métodos
18.
Nat Commun ; 7: 12046, 2016 06 24.
Artigo em Inglês | MEDLINE | ID: mdl-27338821

RESUMO

Reconstructing a scene's 3D structure and reflectivity accurately with an active imaging system operating in low-light-level conditions has wide-ranging applications, spanning biological imaging to remote sensing. Here we propose and experimentally demonstrate a depth and reflectivity imaging system with a single-photon camera that generates high-quality images from ∼1 detected signal photon per pixel. Previous achievements of similar photon efficiency have been with conventional raster-scanning data collection using single-pixel photon counters capable of ∼10-ps time tagging. In contrast, our camera's detector array requires highly parallelized time-to-digital conversions with photon time-tagging accuracy limited to ∼ns. Thus, we develop an array-specific algorithm that converts coarsely time-binned photon detections to highly accurate scene depth and reflectivity by exploiting both the transverse smoothness and longitudinal sparsity of natural scenes. By overcoming the coarse time resolution of the array, our framework uniquely achieves high photon efficiency in a relatively short acquisition time.

19.
Biomed Opt Express ; 6(8): 2865-76, 2015 Aug 01.
Artigo em Inglês | MEDLINE | ID: mdl-26309751

RESUMO

Laser speckle contrast imaging (LSCI) has emerged as a valuable tool for cerebral blood flow (CBF) imaging. We present a multi-exposure laser speckle imaging (MESI) method which uses a high-frame rate acquisition with a negligible inter-frame dead time to mimic multiple exposures in a single-shot acquisition series. Our approach takes advantage of the noise-free readout and high-sensitivity of a complementary metal-oxide-semiconductor (CMOS) single-photon avalanche diode (SPAD) array to provide real-time speckle contrast measurement with high temporal resolution and accuracy. To demonstrate its feasibility, we provide comparisons between in vivo measurements with both the standard and the new approach performed on a mouse brain, in identical conditions.

20.
Rev Sci Instrum ; 85(1): 013107, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24517745

RESUMO

We present the design and characterization of a high-throughput gated photon counter able to count electrical pulses occurring within two well-defined and programmable detection windows. We extensively characterized and validated this instrument up to 100 Mcounts/s and with detection window width down to 70 ps. This instrument is suitable for many applications and proves to be a cost-effective and compact alternative to time-correlated single-photon counting equipment, thanks to its easy configurability, user-friendly interface, and fully adjustable settings via a Universal Serial Bus (USB) link to a remote computer.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA