Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 30
Filtrar
1.
Planta ; 260(1): 4, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38775846

RESUMO

MAIN CONCLUSION: Natural selection influenced adaptive divergence between Cereus fernambucensis and Cereus insularis, revealing key genes governing abiotic stress responses and supporting neoteny in C. insularis. Uncovering the molecular mechanisms driving adaptive divergence in traits related to habitat adaptation remains a central challenge. In this study, we focused on the cactus clade, which includes Cereus sericifer F.Ritter, Cereus fernambucensis Lem., and Cereus insularis Hemsley. These allopatric species inhabit distinct relatively drier regions within the Brazilian Atlantic Forest, each facing unique abiotic conditions. We leveraged whole transcriptome data and abiotic variables datasets to explore lineage-specific and environment-specific adaptations in these species. Employing comparative phylogenetic methods, we identified genes under positive selection (PSG) and examined their association with non-synonymous genetic variants and abiotic attributes through a PhyloGWAS approach. Our analysis unveiled signatures of selection in all studied lineages, with C. fernambucensis northern populations and C. insularis showing the most PSGs. These PSGs predominantly govern abiotic stress regulation, encompassing heat tolerance, UV stress response, and soil salinity adaptation. Our exclusive observation of gene expression tied to early developmental stages in C. insularis supports the hypothesis of neoteny in this species. We also identified genes associated with abiotic variables in independent lineages, suggesting their role as environmental filters on genetic diversity. Overall, our findings suggest that natural selection played a pivotal role in the geographic range of these species in response to environmental and biogeographic transitions.


Assuntos
Adaptação Fisiológica , Cactaceae , Florestas , Perfilação da Expressão Gênica , Filogenia , Brasil , Cactaceae/genética , Cactaceae/fisiologia , Adaptação Fisiológica/genética , Seleção Genética , Transcriptoma , Estresse Fisiológico/genética , Regulação da Expressão Gênica de Plantas
2.
Heredity (Edinb) ; 132(6): 296-308, 2024 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-38637723

RESUMO

Here we use population genomic data (ddRAD-Seq) and ecological niche modeling to test biogeographic hypotheses for the divergence of the island-endemic cactus species Cereus insularis Hemsl. (Cereeae; Cactaceae) from its sister species C. fernambucensis Lem. The Cereus insularis grows in the Fernando de Noronha Islands (FNI), a Neotropical archipelago located 350 km off the Brazilian Atlantic Forest (BAF) coast. Phylogeographic reconstructions support a northward expansion by the common ancestor of C. insularis and C. fernambucensis along the mainland BAF coast, with C. insularis diverging from the widespread mainland taxon C. fernambucensis after colonizing FNI in the late Pleistocene. The morphologically distinct C. insularis is monophyletic and nested within C. fernambucensis, as expected from a progenitor-derivative speciation model. We tested alternative biogeographic and demographic hypotheses for the colonization of the FNI using Approximate Bayesian Computation. We found the greatest support for a stepping-stone path that emerged during periods of decreased sea level (the "bridge" hypothesis), in congruence with historical ecological niche modeling that shows highly suitable habitats on stepping-stone islands during glacial periods. The outlier analyses reveal signatures of selection in C. insularis, suggesting a putative role of adaptation driving rapid anagenic differentiation of this species in FNI.


Assuntos
Teorema de Bayes , Cactaceae , Ilhas , Filogenia , Filogeografia , Cactaceae/genética , Brasil , Ecossistema , Genética Populacional
3.
Ann Bot ; 132(5): 989-1006, 2023 11 30.
Artigo em Inglês | MEDLINE | ID: mdl-37815357

RESUMO

BACKGROUND AND AIMS: Cactaceae are succulent plants, quasi-endemic to the American continent, and one of the most endangered plant groups in the world. Molecular phylogenies have been key to unravelling phylogenetic relationships among major cactus groups, previously hampered by high levels of morphological convergence. Phylogenetic studies using plastid markers have not provided adequate resolution for determining generic relationships within cactus groups. This is the case for the tribe Cereeae s.l., a highly diverse group from tropical America. Here we aimed to reconstruct a well-resolved phylogenetic tree of tribe Cereeae and update the circumscription of suprageneric and generic groups in this tribe. METHODS: We integrated sequence data from public gene and genomic databases with new target sequences (generated using the customized Cactaceae591 probe set) across representatives of this tribe, with a denser taxon sampling of the subtribe Cereinae. We inferred concatenated and coalescent phylogenetic trees and compared the performance of both approaches. KEY RESULTS: Six well-supported suprageneric clades were identified using different datasets. However, only genomic datasets, especially the Cactaceae591, were able to resolve the contentious relationships within the subtribe Cereinae. CONCLUSIONS: We propose a new taxonomic classification within Cereeae based on well-resolved clades, including new subtribes (Aylosterinae subtr. nov., Uebelmanniinae subtr. nov. and Gymnocalyciinae subtr. nov.) and revised subtribes (Trichocereinae, Rebutiinae and Cereinae). We emphasize the importance of using genomic datasets allied with coalescent inference to investigate evolutionary patterns within the tribe Cereeae.


Assuntos
Evolução Biológica , Cactaceae , Filogenia , Análise de Sequência de DNA , Genômica , Cactaceae/genética
4.
Am J Bot ; 110(3): 1-17, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-36708517

RESUMO

PREMISE: Pilosocereus (Cactaceae) is an important dry forest element in all subregions and transitional zones of the neotropics, with the highest diversity in eastern Brazil. The genus is subdivided into informal taxonomic groups; however, most of these are not supported by recent molecular phylogenetic inferences. This lack of confidence is probably due to the use of an insufficient number of loci and the complexity of cactus diversification. Here, we explored the species relationships in Pilosocereus in more detail, integrating multilocus phylogenetic approaches with the assessment of the ancestral range and the effect of geography on diversification shifts. METHODS: We used 28 nuclear, plastid, and mitochondrial loci from 54 plant samples of 31 Pilosocereus species for phylogenetic analyses. We used concatenated and coalescent phylogenetic trees and Bayesian models to estimate the most likely ancestral range and diversification shifts. RESULTS: All Pilosocereus species were clustered in the same branch, except P. bohlei. The phylogenetic relationships were more associated with the geographic distribution than taxonomic affinities among taxa. The genus began diversifying during the Plio-Pleistocene transition in the Caatinga domain and experienced an increased diversification rate during the Calabrian age. CONCLUSIONS: We recovered a well-supported multispecies coalescent phylogeny. Our results refine the pattern of rapid diversification of Pilosocereus species across neotropical drylands during the Pleistocene and highlight the need for taxonomic rearrangements in the genus. We recovered a pulse of diversification during the Pleistocene that was likely driven by multiple dispersal and vicariance events within and among the Caatinga, Cerrado, and Atlantic Forest domains.


Assuntos
Florestas , Filogenia , Filogeografia , Teorema de Bayes , Brasil
5.
An Acad Bras Cienc ; 95(suppl 1): e20220460, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-37646712

RESUMO

Cereus jamacaru is a cactus distributed in Northeastern Brazil, with high symbolic value to this region. However, the interaction, behavior and the role of pollinators remains poorly understood. Here, we investigate the reproductive biology, addressing the ecological significance of floral attributes, including details about floral signaling. The study was carried at three areas of the Caatinga, in 2015, 2017 and 2021. We analyzed the floral morphometry, volume and concentration of the nectar, and characterized the colour and scent of flowers. Additionally, we described the pollinator behavior and performed controlled pollination experiments. The 'Mandacaru' is self-incompatible, has nocturnal anthesis and the nectar is accumulated as droplets in a long hypanthial tube. The flowers have a reflective pattern with a dark outer surface and a white inner surface. (E)-nerolidol is the major component (87.4%) of its floral perfume. We registered the sphingid moth Cocytius antaeus visiting the flowers. The floral attributes, attractants and rewards drives to a sphingophily, and the pollination treatments showed the dependence to fruit set by C. antaeus, the pollinator registered. In this case, if the apparent lack of pollinator diversity encompasses its entire range, the loss of the hawkmoth could severely impact the reproductive success of the cactus.


Assuntos
Cactaceae , Brasil , Florestas , Néctar de Plantas
6.
Mol Phylogenet Evol ; 151: 106896, 2020 10.
Artigo em Inglês | MEDLINE | ID: mdl-32562821

RESUMO

The reconstruction of relationships within recently radiated groups is challenging even when massive amounts of sequencing data are available. The use of restriction site-associated DNA sequencing (RAD-Seq) to this end is promising. Here, we assessed the performance of RAD-Seq to infer the species-level phylogeny of the rapidly radiating genus Cereus (Cactaceae). To examine how the amount of genomic data affects resolution in this group, we used datasets and implemented different analyses. We sampled 52 individuals of Cereus, representing 18 of the 25 species currently recognized, plus members of the closely allied genera Cipocereus and Praecereus, and other 11 Cactaceae genera as outgroups. Three scenarios of permissiveness to missing data were carried out in iPyRAD, assembling datasets with 30% (333 loci), 45% (1440 loci), and 70% (6141 loci) of missing data. For each dataset, Maximum Likelihood (ML) trees were generated using two supermatrices, i.e., only SNPs and SNPs plus invariant sites. Accuracy and resolution were improved when the dataset with the highest number of loci was used (6141 loci), despite the high percentage of missing data included (70%). Coalescent trees estimated using SVDQuartets and ASTRAL are similar to those obtained by the ML reconstructions. Overall, we reconstruct a well-supported phylogeny of Cereus, which is resolved as monophyletic and composed of four main clades with high support in their internal relationships. Our findings also provide insights into the impact of missing data for phylogeny reconstruction using RAD loci.


Assuntos
Evolução Biológica , Cactaceae/genética , Genoma de Planta , Análise de Sequência de DNA , Sequência de Bases , Bases de Dados Genéticas , Loci Gênicos , Especiação Genética , Funções Verossimilhança , Filogenia , Polimorfismo de Nucleotídeo Único/genética , Análise de Componente Principal
7.
Genet Mol Biol ; 42(1): 87-94, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30794719

RESUMO

The study of transferability of simple sequence repeats (SSR) among closely related species is a well-known strategy in population genetics, however transferability among distinct genera is less common. We tested cross-genera SSR amplification in the family Cactaceae using a total of 20 heterologous primers previously developed for the genera Ariocarpus, Echinocactus, Polaskia and Pilosocereus, in four taxa of the genus Cereus: C. fernambucensis subsp. fernambucensis, C. fernambucensis subsp. sericifer, C. jamacaru and C. insularis. Nine microsatellite loci were amplified in Cereus resulting in 35.2% of success in transferability, which is higher than the average rate of 10% reported in the literature for cross-genera transferability in eudicots. The genetic variation in the transferred markers was sufficient to perform standard clustering analysis, indicating each population as a cohesive genetic cluster. Overall, the amount of genetic variation found indicates that the transferred SSR markers might be useful in large-scale population studies within the genus Cereus.

8.
Mol Ecol ; 23(12): 3044-63, 2014 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-24803224

RESUMO

The role of Pleistocene climate changes in promoting evolutionary diversification in global biota is well documented, but the great majority of data regarding this subject come from North America and Europe, which were greatly affected by glaciation. The effects of Pleistocene changes on cold- and/or dry-adapted species in tropical areas where glaciers were not present remain sparsely investigated. Many such species are restricted to small areas surrounded by unfavourable habitats, which may represent potential interglacial microrefugia. Here, we analysed the phylogeographic structure and diversification history of seven cactus species in the Pilosocereus aurisetus complex that are restricted to rocky areas with high diversity and endemism within the Neotropical savannas of eastern South America. We combined palaeodistributional estimates with standard phylogeographic approaches based on two chloroplast DNA regions (trnT-trnL and trnS-trnG), exon 1 of the nuclear gene PhyC and 10 nuclear microsatellite loci. Our analyses revealed a phylogeographic history marked by multiple levels of distributional fragmentation, isolation leading to allopatric differentiation and secondary contact among divergent lineages within the complex. Diversification and demographic events appear to have been affected by the Quaternary climatic cycles as a result of isolation in multiple patches of xerophytic vegetation. These small patches presently harbouring P. aurisetus populations seem to operate as microrefugia, both at present and during Pleistocene interglacial periods; the role of such microrefugia should be explored and analysed in greater detail.


Assuntos
Evolução Biológica , Cactaceae/classificação , Filogenia , Teorema de Bayes , Cactaceae/genética , Mudança Climática , DNA de Cloroplastos/genética , DNA de Plantas/genética , Genética Populacional , Repetições de Microssatélites , Modelos Biológicos , Dados de Sequência Molecular , Filogeografia , Análise de Sequência de DNA , América do Sul
9.
Genetica ; 140(7-9): 277-85, 2012 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-22983678

RESUMO

The Pilosocereus aurisetus group contains eight cactus species restricted to xeric habitats in eastern and central Brazil that have an archipelago-like distribution. In this study, 5-11 microsatellite markers previously designed for Pilosocereus machrisii were evaluated for cross-amplification and polymorphisms in ten populations from six species of the P. aurisetus group. The genotypic information was subsequently used to investigate the genetic relationships between the individuals, populations, and species analyzed. Only the Pmac101 locus failed to amplify in all of the six analyzed species, resulting in an 88 % success rate. The number of alleles per polymorphic locus ranged from 2 to 12, and the most successfully amplified loci showed at least one population with a larger number of alleles than were reported in the source species. The population relationships revealed clear genetic clustering in a neighbor-joining tree that was partially incongruent with the taxonomic limits between the P. aurisetus and P. machrisii species, a fact which parallels the problematic taxonomy of the P. aurisetus group. A Bayesian clustering analysis of the individual genotypes confirmed the observed taxonomic incongruence. These microsatellite markers provide a valuable resource for facilitating large-scale genetic studies on population structures, systematics and evolutionary history in this group.


Assuntos
Cactaceae/genética , Cruzamentos Genéticos , Variação Genética , Repetições de Microssatélites , Alelos , Teorema de Bayes , Brasil , Primers do DNA/química , DNA de Plantas/metabolismo , Genótipo , Polimorfismo Genético , Especificidade da Espécie
10.
Mol Ecol Resour ; 22(3): 1016-1028, 2022 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-34669256

RESUMO

Delimiting species boundaries is a major goal in evolutionary biology. An increasing volume of literature has focused on the challenges of investigating cryptic diversity within complex evolutionary scenarios of speciation, including gene flow and demographic fluctuations. New methods based on model selection, such as approximate Bayesian computation, approximate likelihoods, and machine learning are promising tools arising in this field. Here, we introduce a framework for species delimitation using the multispecies coalescent model coupled with a deep learning algorithm based on convolutional neural networks (CNNs). We compared this strategy with a similar ABC approach. We applied both methods to test species boundary hypotheses based on current and previous taxonomic delimitations as well as genetic data (sequences from 41 loci) in Pilosocereus aurisetus, a cactus species complex with a sky-island distribution and taxonomic uncertainty. To validate our method, we also applied the same strategy on data from widely accepted species from the genus Drosophila. The results show that our CNN approach has a high capacity to distinguish among the simulated species delimitation scenarios, with higher accuracy than ABC. For the cactus data set, a splitter hypothesis without gene flow showed the highest probability in both CNN and ABC approaches, a result agreeing with previous taxonomic classifications and in line with the sky-island distribution and low dispersal of P. aurisetus. Our results highlight the cryptic diversity within the P. aurisetus complex and show that CNNs are a promising approach for distinguishing complex evolutionary histories, even outperforming the accuracy of other model-based approaches such as ABC.


Assuntos
Cactaceae , Aprendizado Profundo , Teorema de Bayes , Evolução Biológica , Cactaceae/genética , Fluxo Gênico , Filogenia , Especificidade da Espécie
11.
Front Plant Sci ; 13: 928577, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-36247592

RESUMO

Inselbergs are azonal formations found scattered in different biomes globally. The first floristic list focusing on an inselberg in the Brazilian Amazon is presented here. We aimed to investigate floristic and phylogenetic connections among Neotropical inselbergs and analyze whether environmental variables act as a filter of plant lineages. We used a database compiled from 50 sites spanning three main Neotropical biomes (Amazon, 11 sites, Atlantic Forest, 14 sites, and Caatinga, 25 sites) comprising 2270 Angiosperm species. Our data highlight the vastly different inselberg flora found in each biome. The inselberg floras of the Atlantic Forest and Caatinga show closer phylogenetic ties than those seen in the other biome pairs. The phylogenetic lineages found in all three biomes are also strongly divergent, even within plant families. The dissimilarity between biomes suggests that distinct biogeographical histories might have unfolded even under comparable environmental filtering. Our data suggest that the inselberg flora is more related to the biome where it is located than to other factors, even when the microclimatic conditions in the outcrops differ strongly from those of the surrounding matrix. Relative to the other biomes, the flora of the Caatinga inselbergs has the highest level of species turnover. There is a possibility that plants colonized these rather distant inselbergs even when they were found under very different climatic conditions than those in the Amazonian and Atlantic Forest biomes. It is worth noting that none of the studied inselbergs found in the Caatinga biome is protected. In view of the uniqueness and drought-resilient lineages present in each group of inselbergs, along with their vulnerability to destruction or disturbance and their strong connection with water availability, we stress the need to protect this ecosystem not only to conserve plants potentially useful for ecological restoration but also to preserve the balance of this ecosystem and its connections.

12.
Mol Phylogenet Evol ; 58(3): 456-68, 2011 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-21236350

RESUMO

Tribe Rhipsalideae is composed of unusual epiphytic or lithophytic cacti that inhabit humid tropical and subtropical forests. Members of this tribe present a reduced vegetative body, a specialized adventitious root system, usually spineless areoles and flowers and fruits reduced in size. Despite the debate surrounding the classification of Rhipsalideae, no studies have ever attempted to reconstruct phylogenetic relationships among its members or to test the monophyly of its genera using DNA sequence data; all classifications formerly proposed for this tribe have only employed morphological data. In this study, we reconstruct the phylogeny of Rhipsalideae using plastid (trnQ-rps16, rpl32-trnL, psbA-trnH) and nuclear (ITS) markers to evaluate the classifications previously proposed for the group. We also examine morphological features traditionally used to delimit genera within Rhipsalideae in light of the resulting phylogenetic trees. In total new sequences for 35 species of Rhipsalideae were produced (out of 55; 63%). The molecular phylogeny obtained comprises four main clades supporting the recognition of genera Lepismium, Rhipsalis, Hatiora and Schlumbergera. The evidence gathered indicate that a broader genus Schlumbergera, including Hatiora subg. Rhipsalidopsis, should be recognized. Consistent morphological characters rather than homoplastic features are used in order to establish a more coherent and practical classification for the group. Nomenclatural changes and a key for the identification of the genera currently included in Rhipsalideae are provided.


Assuntos
Cactaceae/genética , Evolução Molecular , Filogenia , Teorema de Bayes , Cactaceae/classificação , Núcleo Celular/genética , DNA de Cloroplastos/genética , DNA de Plantas/genética , DNA Espaçador Ribossômico/genética , Flores/genética , Funções Verossimilhança , Alinhamento de Sequência , Análise de Sequência de DNA
13.
Am J Bot ; 98(8): e204-6, 2011 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-21821581

RESUMO

PREMISE OF THE STUDY: Microsatellite primers were developed in Pilosocereus machrisii, a columnar cactus with a patchy distribution in eastern tropical South America, to assess its genetic diversity and population structure. METHODS AND RESULTS: Eleven microsatellite markers were developed, of which one was monomorphic among 51 individuals from two populations. The number of alleles per polymorphic locus ranged from two to eight, and the total number of alleles was 57. From the 11 isolated loci, nine were successfully amplified in the other four Pilosocereus species. CONCLUSIONS: The results showed that these markers will be useful for studies of genetic diversity, patterns of gene flow, and population genetic structure in P. machrisii, as well as across other congeneric species.


Assuntos
Cactaceae/genética , Primers do DNA/análise , DNA de Plantas/análise , Repetições de Microssatélites , Polimorfismo Genético , Alelos , Primers do DNA/genética , DNA de Plantas/genética , Frequência do Gene , Triagem de Portadores Genéticos/métodos , Loci Gênicos , Heterozigoto , Desequilíbrio de Ligação , Motivos de Nucleotídeos , Raízes de Plantas/genética , Especificidade da Espécie
14.
PeerJ ; 9: e12244, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34820158

RESUMO

Christiana mennegae is a phylogenetically enigmatic taxon and represents a case in point of a species whose presence escaped the radar of the Amazon lists and the Brazilian Flora project. Here we expand its distribution by adding new records from Peru and overlooked ones from Brazil. To investigate its phylogenetic placement in the Brownlowioideae, part of the rbcL gene of the plastid and the intergenic ITS2 region were sequenced. Macro- and micro-morphological investigation of features of C. mennegae using SEM of foliar, flower, fruit and seed structures are presented. A lectotype for the name is designated here. The morphology of trichomes revealed five types of trichomes ranging from glandular to branched and unbranched and we also report stomata on the seed surface for the first time in Brownlowioideae. Christiana mennegae and C. africana were recovered as sister species in the phylogenetic analysis, albeit with low to moderate support, and more species of this and closely related genera must be sampled and analyzed in order to obtain a clearer picture of the group's affinities and relationships. We provide an update of its conservation status from Vulnerable to Least Concern. We also highlight the need for investment in the digitization of biological collections, botanical capacity building at the local level and the importance of the availability of online literature to speed the study of Amazonian plant diversity.

15.
Front Plant Sci ; 12: 699034, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34557210

RESUMO

Climate change has impacted biodiversity, affecting species and altering their geographical distribution. Besides understanding the impact in the species, it has been advocated that answering if different traits will be differently impacted could allow refined predictions of how climate change will jeopardize biodiversity. Our aim was to evaluate if climate change will potentially impact plant species differently, considering their traits. We evaluated 608 plant species that occur in the naturally open areas of ferruginous outcrops (namely, cangas) in the National Forest of Carajás (Eastern Amazon). Firstly, we estimated the effects of climate change on each species using species distribution modeling, and analyzed this impact in the set containing all species. Secondly, we classified plant species considering the following traits: (i) pollination syndromes (melittophily, phalaenophily, psychophily, cantharophily, entomophily, ornithophily, chiropterophily, anemophily); (ii) habit (tree, shrub, herb, liana, parasite); and (iii) the main habitat of occurrence (open areas and forests). Thirdly, we investigated if the effects of climate change could be significantly more intense considering all the different traits quoted. Our results showed that most plant species will potentially face reduction of suitable habitats under future climate and the scenarios showed that 42% of them may not find suitable areas in the cangas of Carajás. We found no significant difference within each analyzed trait, considering the potential impact of climate change. The most climatically suitable areas (i.e., areas with high probability of species occurrence in the future) are those in the southwest of the study area. These areas can be considered as priority areas for species protection against climate change.

16.
Ecol Evol ; 11(19): 13348-13362, 2021 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-34646474

RESUMO

The canga of the Serra dos Carajás, in Eastern Amazon, is home to a unique open plant community, harboring several endemic and rare species. Although a complete flora survey has been recently published, scarce to no genetic information is available for most plant species of the ironstone outcrops of the Serra dos Carajás. In this scenario, DNA barcoding appears as a fast and effective approach to assess the genetic diversity of the Serra dos Carajás flora, considering the growing need for robust biodiversity conservation planning in such an area with industrial mining activities. Thus, after testing eight different DNA barcode markers (matK, rbcL, rpoB, rpoC1, atpF-atpH, psbK-psbI, trnH-psbA, and ITS2), we chose rbcL and ITS2 as the most suitable markers for a broad application in the regional flora. Here we describe DNA barcodes for 1,130 specimens of 538 species, 323 genera, and 115 families of vascular plants from a highly diverse flora in the Amazon basin, with a total of 344 species being barcoded for the first time. In addition, we assessed the potential of using DNA metabarcoding of bulk samples for surveying plant diversity in the canga. Upon achieving the first comprehensive DNA barcoding effort directed to a complete flora in the Brazilian Amazon, we discuss the relevance of our results to guide future conservation measures in the Serra dos Carajás.

17.
PhytoKeys ; 165: 1-25, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33192143

RESUMO

The world's largest mineral iron province, Serra dos Carajás, is home to an open vegetation known as canga, found on top of isolated outcrops rising out of the Amazon rainforest. Over one thousand vascular plants species have been recorded in these canga sites, including 38 edaphic endemics. A new survey adds to our investigation of biogeographic relationships between sixteen canga outcrops and the effect of the distance between site pairs on the number of shared species, regional species turnover and species distribution patterns. Plant collecting expeditions to the westernmost site, the Serra de Campos of São Félix do Xingu (SFX), were carried out followed by the identification of all collected specimens and the creation of a species database, built to perform biogeographical analyses. Floristic relationships among the sites were investigated regarding their similarity, using multivariate analyses. The correlation between canga areas and species richness was tested, as well as the geographical distance between pairs of outcrops and their shared species. Vascular plants at SFX total 254 species including 17 edaphic endemics. All canga sites are grouped with 25% of minimum similarity, and the SFX falls within a large subgroup of outcrops. The total species number shared between site pairs does not change significantly with geographical distance but is positively correlated with the area of each outcrop. Meanwhile, shared endemic species numbers between site pairs decline when geographical distance increases, possibly imposed by the barrier of the rainforest. Our data suggest higher shared similarity between the largest and species-richest sites as opposed to geographically nearby sites, and provide useful insight for drafting conservation and compensation measures for canga locations. The size of the canga outcrops is associated to higher floristic diversity but connectivity among islands also plays a role in their similarity.

18.
PhytoKeys ; 169: 75-98, 2020.
Artigo em Inglês | MEDLINE | ID: mdl-33354140

RESUMO

As deforestation and fire move forward over pristine vegetation in the Amazon, many species remain undiscovered and may be threatened with extinction before being described. Here, we describe two new species of Utricularia (Lentibulariaceae) collected during recent fieldwork in an area of white-sand vegetation in the eastern Amazon Basin named Campos do Ariramba. Further herbarium revision revealed that both species were first collected over 60 years ago in the same area, remaining unnamed until now. The new species, named U. ariramba sp. nov. and U. jaramacaru sp. nov., are placed in U. sect. Aranella and U. sect. Setiscapella, respectively. We provide full descriptions, illustrations, photographs, a distribution map, and taxonomic discussion for both species. Additionally, we provide a preliminary list of Lentibulariaceae from the Campos do Ariramba. Both new species are assessed as Vulnerable, however, yet known only from a few collections each, highlighting the urgency and importance of fieldwork and taxonomic revisions in the Amazon biogeographic region in order to provide essential data for the conservation of both known and still unknown biodiversity.

19.
PLoS One ; 14(8): e0219753, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-31381566

RESUMO

In order to establish effective conservation strategy, drivers of local and regional patterns of biodiversity need to be understood. The composition of local biodiversity is dependent on a number of factors including evolution and redistribution of lineages through dispersal and environmental heterogeneity. Brazilian canga is characterised by a ferrugineous substrate, found both in the Iron Quadrangle of Minas Gerais and in the Carajás mountains in Amazonia. Canga is one of several specialised habitat types comprising Brazilian campo rupestre, a montane vegetation found within or adjacent to several major Brazilian bioregions, including the Atlantic Forest and Amazonia, with exceptionally high levels of diversity and endemism arising from both history of dispersal and environmental variation. In order to inform biodiversity conservation for canga, and more broadly for campo rupestre, we performed floristic and phylogenetic analyses investigating affinities between 28 sites on different substrates (canga and quartzite) and geographic locations (Carajás, Pará [Amazonia]; Cadeia do Espinhaço, Minas Gerais; Chapada Diamantina, Bahia). Through analysis of 11204 occurrences of 4705 species of angiosperms, we found that Amazonian Carajás canga plant communities formed a cohesive group, distinct from species assemblages found in Eastern Brazil (Minas Gerais, Bahia), either on canga or quartzite. The phylogenetic megatree of species across all sites investigated shows associations between certain clades and Amazonian canga, with few shared species between the Amazonian Carajás and Eastern Brazil sites, while the floristic comparison shows high levels of heterogeneity between sites. The need for reserves for Amazonian Carajás canga has been recognized and addressed by the creation of a national park. However, current sampling does not provide sufficient reassurance that the canga areas now benefitting from full legal protection adequately represent the regional canga flora.


Assuntos
Conservação dos Recursos Naturais , Ecossistema , Plantas , Geografia , Filogenia , Plantas/classificação , América do Sul , Inquéritos e Questionários , Árvores/classificação
20.
PhytoKeys ; (109): 93-101, 2018.
Artigo em Inglês | MEDLINE | ID: mdl-30386164

RESUMO

The results of intensive fieldwork in the National Forest of Carajás (FLONA Carajás) led to the discovery of pistillate plants of Daphnopsisfilipedunculata, an endemic species from the Serra dos Carajás, previously known only from staminate individuals. These newly discovered populations add valuable missing information related to pistillate buds, mature flowers and fruits.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA