RESUMO
The transcription factor Forkhead box M1 (FoxM1) is overexpressed in breast cancers and correlates with poor prognosis. Mechanistically, FoxM1 associates with CBP to activate transcription and with Rb to repress transcription. Although the activating function of FoxM1 in breast cancer has been well documented, the significance of its repressive activity is poorly understood. Using CRISPR-Cas9 engineering, we generated a mouse model that expresses FoxM1-harboring point mutations that block binding to Rb while retaining its ability to bind CBP. Unlike FoxM1-null mice, mice harboring Rb-binding mutant FoxM1 did not exhibit significant developmental defects. The mutant mouse line developed PyMT-driven mammary tumors that were deficient in lung metastasis, which was tumor cell-intrinsic. Single-cell RNA-seq of the tumors revealed a deficiency in prometastatic tumor cells and an expansion of differentiated alveolar type tumor cells, and further investigation identified that loss of the FoxM1/Rb interaction caused enhancement of the mammary alveolar differentiation program. The FoxM1 mutant tumors also showed increased Pten expression, and FoxM1/Rb was found to activate Akt signaling by repressing Pten. In human breast cancers, expression of FoxM1 negatively correlated with Pten mRNA. Furthermore, the lack of tumor-infiltrating cells in FoxM1 mutant tumors appeared related to decreases in pro-metastatic tumor cells that express factors required for infiltration. These observations demonstrate that the FoxM1/Rb-regulated transcriptome is critical for the plasticity of breast cancer cells that drive metastasis, identifying a prometastatic role of Rb when bound to FoxM1. SIGNIFICANCE: This work provides new insights into how the interaction between FoxM1 and Rb facilitates the evolution of metastatic breast cancer cells by altering the transcriptome.
Assuntos
Neoplasias da Mama , Proteína Forkhead Box M1/metabolismo , Fatores de Transcrição Forkhead , Animais , Neoplasias da Mama/patologia , Diferenciação Celular/genética , Linhagem Celular Tumoral , Feminino , Proteína Forkhead Box M1/genética , Fatores de Transcrição Forkhead/genética , Fatores de Transcrição Forkhead/metabolismo , Regulação Neoplásica da Expressão Gênica , Humanos , Camundongos , Transdução de Sinais , Transcrição GênicaRESUMO
Two replicative forms characterize the asexual cycle of the protozoan parasite Toxoplasma gondii: rapidly growing tachyzoites and slowly dividing encysted bradyzoites. The mechanisms that regulate the transition between these two stages are not clearly understood. However, stress inducers that also activate heat shock protein expression can trigger formation of bradyzoites in vitro. Here, we studied the association of the T.gondii Hsp90 with modulation of parasite differentiation and response to stress stimuli using RH DeltaUPRT parasites and the cystogenic strain ME49 and a clone derivative of that strain, PK. Our results show that Hsp90 transcript and protein levels increase under stress or bradyzoite differentiation conditions. Moreover, fluorescence microscopy studies revealed that Hsp90 is present in the cytosol of tachyzoites and both in the nucleus and cytosol of mature bradyzoites, suggesting a correlation between its subcellular organization and these two developmental stages. To further characterize the role for Hsp90 in bradyzoite differentiation, T.gondii tachyzoite mutants that are defective in differentiation showed the same staining pattern as tachyzoites under differentiation conditions. In addition, geldanamycin, a benzoquinone ansamycin antibiotic capable of binding and disrupting the function of Hsp90, blocked conversion both from the tachyzoite to bradyzoite and the bradyzoite to tachyzoite stage, suggesting an essential role for this protein in the regulation of stage interconversion. These results thus suggest Hsp90 may play a role in stage switch.