Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Gac Med Mex ; 157(4): 343-349, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-35133336

RESUMO

INTRODUCTION: Sarcoplasmic reticulum Ca2+ ATPases (SERCA) enzymes are essential for intracellular Ca2+ homeostasis. SERCA genes (ATP2A1-3) encode for different functional isoforms of the protein, whose expression or function is altered in several types of cancer, such as gastric and oral, as well as colon, breast, lung, thyroid, liver, and prostate cancer, among others. However, the role played by SERCA pumps in carcinogenesis is unknown. METHODS: Techniques such as real-time polymerase chain reaction, optical microscopy, proliferation and cell death assays, as well as bioinformatic analyses were used. OBJECTIVES: To evaluate the expression levels of the ATP2A2 and ATP2A3 genes in cell lines representative of different subtypes of breast cancer. RESULTS: The results show that the MDA-MB-231 cell line expresses lower mRNA levels for the ATP2A3 gene in comparison with MCF-7 cells. The use of the phytoestrogen resveratrol induces ATP2A3 expression, decreases proliferation, and induces apoptosis in both cell types. CONCLUSIONS: SERCA expression might function as a tool to differentiate breast cancer subtypes, which have different treatment requirements.


INTRODUCCIÓN: Las enzimas SERCA son esenciales para la homeostasis intracelular de Ca2+. Los genes SERCA (ATP2A1-3) codifican para distintas isoformas funcionales de la proteína, cuya expresión o función se encuentra alterada en diversos tipos de cáncer, como el gástrico y el oral, así como de colon, mama, pulmón, tiroides, hígado y próstata, entre otros. Sin embargo, se desconoce el papel de las bombas SERCA en la carcinogénesis. MÉTODOS: Se utilizaron estudios como reacción en cadena de la polimerasa en tiempo real, microscopia óptica, ensayos de proliferación y muerte celular, así como análisis bioinformáticos. OBJETIVOS: Evaluar los niveles de expresión de los genes ATP2A2 y ATP2A3 en líneas celulares que representan diferentes subtipos de cáncer de mama. RESULTADOS: La línea celular MDA-MB-231 expresa niveles más bajos del ARNm para el gen ATP2A3, en comparación con las células MCF-7. El uso del fitoestrógeno resveratrol induce la expresión de ATP2A3, disminuye la proliferación e induce apoptosis en ambos tipos de células. CONCLUSIONES: La expresión de SERCA puede funcionar como una herramienta para diferenciar los subtipos de cáncer de mama, los cuales tienen distintas necesidades de tratamiento.


Assuntos
Neoplasias da Mama , Apoptose , Neoplasias da Mama/genética , Cálcio/metabolismo , Feminino , Expressão Gênica , Regulação Neoplásica da Expressão Gênica , Humanos , Retículo Sarcoplasmático/metabolismo
2.
Mol Carcinog ; 58(6): 887-897, 2019 06.
Artigo em Inglês | MEDLINE | ID: mdl-30657210

RESUMO

The knowledge about the role of calcium-regulated pathways in cancer cell growth and differentiation could be useful for the development of new therapeutic approaches to diminish its mortality. The ATP2A genes encode for SERCA pumps, which modulate cytosolic Ca2+ concentration, regulating various cellular processes including cell growth. ATP2A3 gene transcriptional down-regulation has been reported in gastric and colon cancer, but there is still a lack of understanding about the epigenetic processes regulating its transcription. In this work, we report that butyrate, trichostatin A, and 5-azacytidine treatments increase SERCA3 expression, increased apoptosis, and decreased cell viability of the KATO-III gastric carcinoma cell line. We analyzed the methylation profile of the ATP2A3 gene promoter CpG island, finding clones with methylated status through -280 to -135 promoter region, harboring Sp1 and AP-2 binding sites, which could have a role in transcriptional repression. Post-translational modifications of histones show a major role in the ATP2A3 transcriptional regulation, and our results show histones marks linked to transcriptional repression associated with the -262 to -135 region, this repressive context changed to transcriptional permissive through SERCA3 re-expressing conditions. These results suggest that the nucleotide sequence from -280 to -135 position is an ATP2A3 epigenetic regulatory CpG region in KATO-III cells. Analyses of online-databases show a decreased SERCA3 expression in gastric and colon tumors, as well as overall survival results, showed that high SERCA3 expression could serve as a favorable prognostic marker for colon and gastric cancer patients.


Assuntos
Neoplasias do Colo/genética , Epigênese Genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Neoplasias Gástricas/genética , Sítios de Ligação , Linhagem Celular Tumoral , Ilhas de CpG , Metilação de DNA , Regulação para Baixo , Regulação Neoplásica da Expressão Gênica , Histonas/metabolismo , Humanos , Regiões Promotoras Genéticas , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/química , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Fator de Transcrição Sp1/metabolismo , Análise de Sobrevida
3.
Mol Cell Biochem ; 442(1-2): 19-28, 2018 May.
Artigo em Inglês | MEDLINE | ID: mdl-28884444

RESUMO

The cardiac sarco/endoplasmic reticulum Ca2+-ATPase-2a (SERCA2a) is vital for the correct handling of calcium concentration in cardiomyocytes. Recent studies showed that the induction of endoplasmic reticulum (ER) stress (ERS) with the SERCA2 inhibitor Thapsigargin (Tg) increases the mRNA and protein levels of SERCA2a. The SERCA2 gene promoter contains an ERS response element (ERSE) at position -78 bp that is conserved among species and might transcriptionally regulate SERCA2 gene expression. However, its involvement in SERCA2 basal and calcium-mediated transcriptional activation has not been elucidated. In this work, we show that in cellular cultures of neonatal rat ventricular myocytes, the treatment with Tg or the calcium ionophore A23187 increases the SERCA2a mRNA and protein abundance, as well as the transcriptional activity of two chimeric human SERCA2 gene constructs, containing -254 and -2579 bp of 5'-regulatory region cloned in the pGL3-basic vector and transiently transfected in cultured cardiomyocytes. We found that the ERSE present in the SERCA2 proximal promoter contains a CCAAT box that is involved in basal and ERS-mediated hSERCA2 transcriptional activation. The EMSA results showed that the CCAAT box present in the ERSE recruits the NF-Y transcription factor. Additionally, by ChIP assays, we confirmed in vivo binding of NF-Y and C/EBPß transcription factors to the SERCA2 gene proximal promoter.


Assuntos
Estresse do Retículo Endoplasmático/fisiologia , Regulação da Expressão Gênica/fisiologia , Miócitos Cardíacos/metabolismo , Elementos de Resposta , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/sangue , Transcrição Gênica/fisiologia , Animais , Calcimicina/farmacologia , Ionóforos de Cálcio/farmacologia , Estresse do Retículo Endoplasmático/efeitos dos fármacos , Regulação da Expressão Gênica/efeitos dos fármacos , Ratos , Ratos Wistar , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Tapsigargina/farmacologia , Transcrição Gênica/efeitos dos fármacos
4.
J Physiol ; 595(13): 4167-4187, 2017 07 01.
Artigo em Inglês | MEDLINE | ID: mdl-28303574

RESUMO

KEY POINTS: Mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1) result in oculopharyngeal muscular dystrophy (OPMD). This disease is of late-onset, but the underlying mechanism is unclear. Ca2+ stimulates muscle growth and contraction and, because OPMD courses with muscle atrophy and weakness, we hypothesized that the homeostasis of Ca2+ is altered in this disorder. C2C12 myotubes were transfected with cDNAs encoding either PABPN1 or the PABPN1-17A OPMD mutation. Subsequently, they were investigated concerning not only excitation-contraction coupling (ECC) and intracellular levels of Ca2+ , but also differentiation stage and nuclear structure. PABPN1-17A gave rise to: inhibition of Ca2+ release during ECC, depletion of sarcoplasmic reticulum Ca2+ content, reduced expression of ryanodine receptors, altered nuclear morphology and incapability to stimulate myoblast fusion. PABPN1-17A failed to inhibit ECC in adult muscle fibres, suggesting that its effects are primarily related to muscle regeneration. ABSTRACT: Oculopharyngeal muscular dystrophy (OPMD) is linked to mutations in the gene encoding poly(A)-binding protein nuclear 1 (PABPN1). OPMD mutations consist of an expansion of a tract that contains 10 alanines (to 12-17). This disease courses with muscle weakness that begins in adulthood, but the underlying mechanism is unclear. In the present study, we investigated the functional effects of PABPN1 and an OPMD mutation (PABPN1-17A) using myotubes transfected with cDNAs encoding these proteins (GFP-tagged). PABPN1 stimulated myoblast fusion (100%), whereas PABPN1-17A failed to mimic this effect. Additionally, the OPMD mutation markedly altered nuclear morphology; specifically, it led to nuclei with a more convoluted and ovoid shape. Although PABPN1 and PABPN1-17A modified the expression of sarcoplasmic/endoplasmic reticulum Ca2+ -ATPase and calsequestrin, the corresponding changes did not have a clear impact on [Ca2+ ]. Interestingly, neither L-type Ca2+ channels, nor voltage-gated sarcoplasmic reticulum (SR) Ca2+ release (VGCR) was altered by PABPN1. However, PABPN1-17A produced a selective inhibition of VGCR (50%). This effect probably arises from both lower expression of RyR1 and depletion of SR Ca2+ . The latter, however, was not related to inhibition of store-operated Ca2+ entry. Both PABPN1 constructs promoted a moderated decrease in cytosolic [Ca2+ ], which apparently results from down-regulation of excitation-coupled Ca2+ entry. On the other hand, PABPN1-17A did not alter ECC in muscle fibres, suggesting that adult muscle is less prone to developing deleterious effects. These results demonstrate that PABPN1 proteins regulate essential processes during myotube formation and support the notion that OPMD involves disruption of myogenesis, nuclear structure and homeostasis of Ca2+ .


Assuntos
Fibras Musculares Esqueléticas/metabolismo , Distrofia Muscular Oculofaríngea/genética , Proteína I de Ligação a Poli(A)/genética , Animais , Canais de Cálcio Tipo L/metabolismo , Sinalização do Cálcio , Calsequestrina/metabolismo , Linhagem Celular , Núcleo Celular/metabolismo , Células Cultivadas , Acoplamento Excitação-Contração , Camundongos , Camundongos Endogâmicos BALB C , Fibras Musculares Esqueléticas/fisiologia , Mioblastos/metabolismo , Mioblastos/patologia , Mioblastos/fisiologia , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
5.
Mol Carcinog ; 56(7): 1703-1711, 2017 07.
Artigo em Inglês | MEDLINE | ID: mdl-28150875

RESUMO

The Ca2+ -ATPases from the Sarco/endoplasmic reticulum (SERCA) are fundamental for maintaining intracellular [Ca2+ ] homeostasis by pumping Ca2+ into the endoplasmic reticulum (ER) of eukaryotic cells. SERCA enzymes are encoded by three different genes (ATP2A1-3), whose expression occurs in a tissue and development stage-specific manner. It has been reported alterations in the expression of SERCA2 and SERCA3 pumps in different types of cancer: oral, lung, colon, stomach, central nervous system, thyroid, breast, and prostate. Resveratrol (RSV), a phytoalexin produced by a wide variety of plants in response to stress situations can modulate cellular processes involved in all stages of carcinogenesis. In this work, we used breast cancer cell lines (MCF-7 and MDA-MB-231) to evaluate mRNA levels of ATP2A2 and ATP2A3 genes in response to RSV treatment. Our results demonstrate that RSV treatment induced the expression of ATP2A3 gene in both cell lines in a time and concentration-dependent manner, while the expression of ATP2A2 gene remained unaffected. The RSV-induced expression of SERCA3 in these breast cancer cell lines produced decreased cell viability, triggered apoptosis and changes in cytosolic Ca2+ levels, as well as changes in the capacity for Ca2+ release by the ER. These data suggest an important participation of SERCA3 genes in RSV-mediated anti-tumor effect in breast cancer cell lines. Nevertheless, further research is needed to elucidate the molecular mechanisms underlying this effect.


Assuntos
Anticarcinógenos/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/patologia , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Estilbenos/farmacologia , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Cálcio/metabolismo , Proliferação de Células/efeitos dos fármacos , Feminino , Humanos , RNA Interferente Pequeno/genética , Resveratrol , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/antagonistas & inibidores , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Células Tumorais Cultivadas
6.
Mol Carcinog ; 56(2): 735-750, 2017 02.
Artigo em Inglês | MEDLINE | ID: mdl-27433831

RESUMO

The Sarco/Endoplasmic Reticulum Ca2+ -ATPases (SERCAs), pump Ca2+ into the endoplasmic reticulum lumen modulating cytosolic Ca2+ concentrations to regulate various cellular processes including cell growth. Previous studies have reported a downregulation of SERCA3 protein expression in gastric and colon cancer cell lines and showed that in vitro cell differentiation increases its expression. However, little is known about the transcriptional mechanisms and transcription factors that regulate SERCA3 expression in epithelial cancer cells. In this work, we demonstrate that SERCA3 mRNA is upregulated up to 45-fold in two epithelial cancer cell lines, KATO-III and Caco-2, induced to differentiate with histone deacetylase inhibitors (HDACi) and by cell confluence, respectively. To evaluate the transcriptional elements responding to the differentiation stimuli, we cloned the human ATP2A3 promoter, generated deletion constructs and transfected them into KATO-III cells. Basal and differentiation responsive DNA elements were located by functional analysis within the first -135 bp of the promoter region. Using site-directed mutagenesis and DNA-protein binding assays we found that Sp1, Sp3, and Klf-4 transcription factors bind to ATP2A3 proximal promoter elements and regulate basal gene expression. We showed that these factors participated in the increase of ATP2A3 expression during cancer cell differentiation. This study provides evidence for the first time that Sp1, Sp3, and Klf-4 transcriptionally modulate the expression of SERCA3 during induction of epithelial cancer cell differentiation. © 2016 Wiley Periodicals, Inc.


Assuntos
Neoplasias do Colo/genética , Regulação Neoplásica da Expressão Gênica , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Neoplasias Gástricas/genética , Ativação Transcricional , Sequência de Bases , Células CACO-2 , Diferenciação Celular , Linhagem Celular Tumoral , Colo/metabolismo , Neoplasias do Colo/metabolismo , Mucosa Gástrica/metabolismo , Humanos , Fator 4 Semelhante a Kruppel , Fatores de Transcrição Kruppel-Like/metabolismo , Regiões Promotoras Genéticas , Fator de Transcrição Sp1/metabolismo , Fator de Transcrição Sp3/metabolismo , Neoplasias Gástricas/metabolismo
7.
Mol Carcinog ; 55(10): 1477-85, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-26331238

RESUMO

Recent studies have shown that expression of Sarco(endo)plasmic Reticulum Ca(2+) -ATPase 2 (SERCA2) is decreased in oral cancer; whereas expression of SERCA3 is considerably decreased or absent in human colon, gastric, breast, and lung cancers. The ATP2A2 and ATP2A3 genes encode SERCA2 and SERCA3 isoforms, respectively. Promoter methylation on CpG islands was responsible for the repression of ATP2A2 gene in human oral cancer samples. On the other hand, histone deacetylase inhibitors (HDACi) up-regulate ATP2A3 expression in gastric, colon, and lung cancer cells in culture, however, the molecular mechanism is unknown. In this study, we investigate whether HDACi and DNA methylation regulate ATP2A2 and ATP2A3 expression in human breast cancer cell lines. Results show a marked induction of SERCA3a and pan-SERCA3 mRNA expression in human MCF-7 and MDA-MB-231 cells treated with sodium butyrate (NaB) or trichostatin A (TSA); whereas SERCA2b mRNA expression did not change significantly. ChIP assays show that NaB or TSA treatment of MDA-MB-231 cells increases H3K9 acetylation on ATP2A3 promoter. NaB also decreases H3K9 trimethylation; suggesting that these modifications stimulate ATP2A3 gene expression, through a chromatin remodeling mechanism. In contrast, NaB or TSA do not increase H3K9-acetylation of ATP2A2 proximal promoter. In addition, treatment with 5-aza-2'-deoxycytidine did not affect SERCA2b and SERCA3a expression, suggesting that promoter methylation status does not alter their expression in these cell lines. We propose that alteration of SERCA2b/SERCA3a isoform expression ratio could affect calcium management within the cell, and thus, the cellular pathways regulated by calcium could be compromised, such as cellular proliferation or apoptosis. © 2015 Wiley Periodicals, Inc.


Assuntos
Neoplasias da Mama/genética , Inibidores de Histona Desacetilases/farmacologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Regulação para Cima , Ácido Butírico/farmacologia , Linhagem Celular Tumoral , Ilhas de CpG/efeitos dos fármacos , Metilação de DNA/efeitos dos fármacos , Feminino , Regulação Neoplásica da Expressão Gênica/efeitos dos fármacos , Humanos , Ácidos Hidroxâmicos/farmacologia , Células MCF-7 , Regiões Promotoras Genéticas/efeitos dos fármacos
8.
J Biol Chem ; 289(47): 32798-810, 2014 Nov 21.
Artigo em Inglês | MEDLINE | ID: mdl-25271154

RESUMO

Although the pancreatic duodenal homeobox 1 (Pdx-1) transcription factor is known to play an indispensable role in ß cell development and secretory function, recent data also implicate Pdx-1 in the maintenance of endoplasmic reticulum (ER) health. The sarco-endoplasmic reticulum Ca(2+) ATPase 2b (SERCA2b) pump maintains a steep Ca(2+) gradient between the cytosol and ER lumen. In models of diabetes, our data demonstrated loss of ß cell Pdx-1 that occurs in parallel with altered SERCA2b expression, whereas in silico analysis of the SERCA2b promoter revealed multiple putative Pdx-1 binding sites. We hypothesized that Pdx-1 loss under inflammatory and diabetic conditions leads to decreased SERCA2b levels and activity with concomitant alterations in ER health. To test this, siRNA-mediated knockdown of Pdx-1 was performed in INS-1 cells. The results revealed reduced SERCA2b expression and decreased ER Ca(2+), which was measured using fluorescence lifetime imaging microscopy. Cotransfection of human Pdx-1 with a reporter fused to the human SERCA2 promoter increased luciferase activity 3- to 4-fold relative to an empty vector control, and direct binding of Pdx-1 to the proximal SERCA2 promoter was confirmed by chromatin immunoprecipitation. To determine whether restoration of SERCA2b could rescue ER stress induced by Pdx-1 loss, Pdx1(+/-) mice were fed a high-fat diet. Isolated islets demonstrated an increased spliced-to-total Xbp1 ratio, whereas SERCA2b overexpression reduced the Xbp1 ratio to that of wild-type controls. Together, these results identify SERCA2b as a novel transcriptional target of Pdx-1 and define a role for altered ER Ca(2+) regulation in Pdx-1-deficient states.


Assuntos
Cálcio/metabolismo , Retículo Endoplasmático/metabolismo , Proteínas de Homeodomínio/genética , Células Secretoras de Insulina/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , Transativadores/genética , Animais , Linhagem Celular Tumoral , Diabetes Mellitus/genética , Diabetes Mellitus/metabolismo , Expressão Gênica , Regulação da Expressão Gênica , Células HEK293 , Proteínas de Homeodomínio/metabolismo , Humanos , Immunoblotting , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Mutantes , Microscopia de Fluorescência/métodos , Células NIH 3T3 , Interferência de RNA , Reação em Cadeia da Polimerase Via Transcriptase Reversa , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transativadores/metabolismo
9.
Biochim Biophys Acta ; 1841(1): 132-40, 2014 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-24013029

RESUMO

Obesity is a public health problem that contributes to the development of insulin resistance, which is associated with an excessive accumulation of lipids in skeletal muscle tissue. There is evidence that soy protein can decrease the ectopic accumulation of lipids and improves insulin sensitivity; however, it is unknown whether soy isoflavones, particularly genistein, can stimulate fatty acid oxidation in the skeletal muscle. Thus, we studied the mechanism by which genistein stimulates fatty acid oxidation in the skeletal muscle. We showed that genistein induced the expression of genes of fatty acid oxidation in the skeletal muscle of Zucker fa/fa rats and in leptin receptor (ObR)-silenced C2C12 myotubes through AMPK phosphorylation. Furthermore, the genistein-mediated AMPK phosphorylation occurred via JAK2, which was possibly activated through a mechanism that involved cAMP. Additionally, the genistein-mediated induction of fatty acid oxidation genes involved PGC1α and PPARδ. As a result, we observed that genistein increased fatty acid oxidation in both the control and silenced C2C12 myotubes, as well as a decrease in the RER in mice, suggesting that genistein can be used in strategies to decrease lipid accumulation in the skeletal muscle.


Assuntos
Proteínas Quinases Ativadas por AMP/metabolismo , Anticarcinógenos/farmacologia , Ácidos Graxos/metabolismo , Genisteína/farmacologia , Janus Quinase 2/metabolismo , Fibras Musculares Esqueléticas/metabolismo , Mioblastos Esqueléticos/metabolismo , Receptores para Leptina/metabolismo , Proteínas Quinases Ativadas por AMP/genética , Animais , Linhagem Celular , Ativação Enzimática/efeitos dos fármacos , Ativação Enzimática/genética , Ácidos Graxos/genética , Janus Quinase 2/genética , Masculino , Camundongos , Oxirredução/efeitos dos fármacos , Coativador 1-alfa do Receptor gama Ativado por Proliferador de Peroxissomo , Fosforilação/efeitos dos fármacos , Ratos , Ratos Zucker , Receptores Citoplasmáticos e Nucleares/genética , Receptores Citoplasmáticos e Nucleares/metabolismo , Receptores para Leptina/genética , Fatores de Transcrição/genética , Fatores de Transcrição/metabolismo
10.
Cell Calcium ; 117: 102836, 2024 01.
Artigo em Inglês | MEDLINE | ID: mdl-37988873

RESUMO

Epigenetic mechanisms regulate multiple cell functions like gene expression and chromatin conformation and stability, and its misregulation could lead to several diseases including cancer. Epigenetic drugs are currently under investigation in a broad range of diseases, but the cellular processes involved in regulating epigenetic mechanisms are not fully understood. Calcium (Ca2+) signaling regulates several cellular mechanisms such as proliferation, gene expression, and metabolism, among others. Moreover, Ca2+ signaling is also involved in diseases such as neurological disorders, cardiac, and cancer. Evidence indicates that Ca2+ signaling and epigenetics are involved in the same cellular functions, which suggests a possible interplay between both mechanisms. Ca2+-activated transcription factors regulate the recruitment of chromatin remodeling complexes into their target genes, and Ca2+-sensing proteins modulate their activity and intracellular localization. Thus, Ca2+ signaling is an important regulator of epigenetic mechanisms. Moreover, Ca2+ signaling activates epigenetic mechanisms that in turn regulate genes involved in Ca2+ signaling, suggesting possible feedback between both mechanisms. The understanding of how epigenetics are regulated could lead to developing better therapeutical approaches.


Assuntos
Epigênese Genética , Neoplasias , Humanos , Fatores de Transcrição/metabolismo , Cromatina , Cálcio/metabolismo , Neoplasias/genética
11.
Can J Physiol Pharmacol ; 90(8): 1017-28, 2012 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-22784385

RESUMO

The precise control of Ca(2+) levels during the contraction-relaxation cycle in cardiac myocytes is extremely important for normal beat-to-beat contractile activity. The sarcoplasmic reticulum (SR) plays a key role controlling calcium concentration in the cytosol. The SR Ca(2+)-ATPase (SERCA2) transports Ca(2+) inside the SR lumen during relaxation of the cardiac myocyte. Calsequestrin (Casq2) is the main protein in the SR lumen, functioning as a Ca(2+) buffer and participating in Ca(2+) release by interacting with the ryanodine receptor 2 (RyR2) Ca(2+)-release channel. Alterations in normal Ca(2+) handling significantly contribute to the contractile dysfunction observed in cardiac hypertrophy and in heart failure. Transcriptional regulation of the SERCA2 gene has been extensively studied and some of the mechanisms regulating its expression have been elucidated. Overexpression of Sp1 factor in cardiac hypertrophy downregulates SERCA2 gene expression and increased levels of thyroid hormone up-regulates its transcription. Other hormones such norepinephrine, angiotensin II, endothelin-1, parathyroid hormone, prostaglandin-F2α, as well the cytokines tumor necrosis factor-α and interleukin-6 also downregulate SERCA2 expression. Calcium acting through the calcineurin-NFAT (nuclear factor of activated T cells) pathway has been suggested to regulate SERCA2 and CASQ2 gene expression. This review focuses on the current knowledge regarding transcriptional regulation of SERCA2 and CASQ2 genes in the normal and pathologic heart.


Assuntos
Calsequestrina/biossíntese , Regulação para Baixo , Miócitos Cardíacos/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Retículo Sarcoplasmático/metabolismo , Animais , Cálcio/metabolismo , Insuficiência Cardíaca/genética , Insuficiência Cardíaca/metabolismo , Humanos , Modelos Biológicos , Retículo Sarcoplasmático/genética , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
12.
J Cell Commun Signal ; 16(3): 461-474, 2022 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-34762262

RESUMO

Breast cancer-associated deaths are related mainly to specific molecular subtypes and the presence of metastasis. The Epithelial-to-Mesenchymal Transition (EMT) and Ca2+ signaling pathways are involved in breast cancer metastasis, and they are regulated in part by epigenetic mechanisms. Moreover, activation of EMT modulates Ca2+ concentration and in turn, Ca2+ signaling regulates the expression of EMT markers. Also, activation of Ca2+ signaling genes with epigenetic inhibitors reverts the EMT. Thus, Ca2+ signaling might have an important role in breast cancer metastasis and EMT, particularly through the epigenetic regulation of genes involved in its signaling. However, little is known due to that an estimate of 1670 genes participate in the Ca2+ signaling and only a few genes have been studied. Here, we aimed to explore the expression of all genes involved in Ca2+ signaling in all breast cancer subtypes and EMT, and whether modulation of epigenetic mechanisms is related to their expression. Several genes of the Ca2+ signaling are altered in all breast cancer subtypes, being the cadherins and voltage channels the most frequent altered genes. Also, DNA methylation and histone posttranslational modifications showed a good correlation with their altered expression. The expression of the cadherins and voltage channels is also modulated during breast EMT, and ATAC-seq results suggest that chromatin rearrangement at their promoter is involved. In conclusion, the expression of the genes involved in Ca2+ signaling is altered in all breast cancer subtypes and during EMT, and epigenetic mechanisms are an attractive target to regulate their expression.

13.
J Nutr Biochem ; 108: 109092, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35718098

RESUMO

Both obesity and cancer are complex medical conditions that are considered public health problems. The influence of obesity on the predisposition to develop various types of cancer has been observed in a wide variety of studies. Due to their importance as public health problems, and the close relationship between both conditions, it is important to be able to understand and associate them mechanistically. In this review article, we intend to go a little further, by finding relationships between lifestyle, which can lead a person to develop obesity, and how it influences at the cellular and molecular level, affecting gene expression to favor signaling pathways or transcriptional programs involved in cancer. We describe how products of metabolism and intermediate metabolism can affect chromatin structure, participating in the regulation (or dysregulation) of gene expression, and we show an analysis of genes that are responsive to diets high in sugar and fat, and how their epigenetic landscape is altered.


Assuntos
Epigênese Genética , Pandemias , Carcinogênese/genética , Dieta/efeitos adversos , Humanos , Obesidade/metabolismo
14.
J Physiol ; 589(Pt 19): 4649-69, 2011 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-21825032

RESUMO

Central core disease (CCD) is a congenital human myopathy associated with mutations in the gene encoding the skeletal muscle ryanodine receptor (RyR1), resulting in skeletal muscle weakness and lower limb deformities. The muscle weakness can be at least partially explained by a reduced magnitude of voltage-gated Ca(2+) release (VGCR). To date, only a few studies have focused on identifying potential therapeutic agents for CCD. Therefore, in this work we investigated the potential use of the calcitonin gene related peptide (CGRP) to restore VGCR in myotubes expressing CCD RyR1 mutants. We also examined the influence of CCD mutants on Ca(2+)-dependent processes involved in myogenesis (myoblast fusion and sarcoendoplasmic reticulum Ca(2+)-ATPase isoform 2 (SERCA2) gene expression). C2C12 cells were transfected with cDNAs encoding either wild-type RyR1 or CCD mutants, and then exposed to CGRP (100 nm, 1-4 h). Expression of the I4897T mutant significantly inhibited SERCA2 gene expression and myoblast fusion, whereas the Y523S mutant exerted the opposite effect. Interestingly, both mutants clearly inhibited VGCR (50%), due to a reduction in SR Ca(2+) content. However, no major changes due to CGRP or CCD mutants were observed in I(CaL). Our data suggest that the Y523S mutant results in store depletion via decompensated SR Ca(2+) leak, while the I4897T mutant inhibits SERCA2 gene expression. Remarkably, in both cases CGRP restored VGCR, likely to have been by enhancing phospholamban (PLB) phosphorylation, SERCA activity and SR Ca(2+) content. Taken together, our data show that in the C2C12 model system, changes in excitation-contraction coupling induced by the expression of RyR1 channels bearing CCD mutations Y523S or I4897T can be reversed by CGRP.


Assuntos
Peptídeo Relacionado com Gene de Calcitonina/genética , Cálcio/metabolismo , Acoplamento Excitação-Contração/genética , Fibras Musculares Esqueléticas/fisiologia , Miopatia da Parte Central/genética , Canal de Liberação de Cálcio do Receptor de Rianodina/genética , Animais , Peptídeo Relacionado com Gene de Calcitonina/metabolismo , Canais de Cálcio Tipo L/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Linhagem Celular , Potenciais da Membrana/genética , Potenciais da Membrana/fisiologia , Camundongos , Contração Muscular/genética , Contração Muscular/fisiologia , Desenvolvimento Muscular , Fibras Musculares Esqueléticas/metabolismo , Músculo Esquelético/metabolismo , Músculo Esquelético/fisiologia , Mutação , Mioblastos/metabolismo , Mioblastos/fisiologia , Miopatia da Parte Central/metabolismo , Fosforilação , Canal de Liberação de Cálcio do Receptor de Rianodina/metabolismo , Retículo Sarcoplasmático/genética , Retículo Sarcoplasmático/metabolismo , Retículo Sarcoplasmático/fisiologia , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Transdução de Sinais/genética , Transdução de Sinais/fisiologia
15.
IUBMB Life ; 63(10): 847-55, 2011 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-21901815

RESUMO

The cytosolic calcium concentration ([Ca(2+)](c)) is key for the regulation of many cellular processes, such cell signaling and proliferation, metabolism, and muscle contraction. In cardiomyocytes, Ca(2+) is an important regulator in many cellular functions such electrophysiological processes, excitation-contraction coupling, regulation of contractile proteins activity, energy metabolism, cell death, and transcriptional regulation by the activation of Ca(2+)-dependent transcriptional pathways. In cardiomyocytes, the two main Ca(2+) -dependent pathways are the Ca(2+)/calmodulin-calcineurin-NFAT and the Ca(2+) /calmodulin-dependent kinases-MEF2. Both pathways are involved in the transcriptional control of many cardiac genes. Cardiac hypertrophy (CH) and heart failure (HF) are characterized by alterations in calcium handling such a low sarcoplasmic reticulum Ca(2+) content, decreased rate of Ca(2+) removal from the sarcoplasm, increased diastolic [Ca(2+)](c), and decreased systolic [Ca(2+)](c), all of them contributing to diminished contractibility and force generation in failing heart. At gene expression level, there are also many changes such decreased levels of SERCA2a and activation of a fetal gene expression program in cardiomyocytes. A variety of Ca(2+)-dependent signaling pathways have been implicated in CH and HF, but whether these pathways are interrelated and whether there is specificity among them are still unclear and under investigation. The focus of this review is to make an analysis of the current knowledge about the role of Ca(2+) signaling pathways in the regulation of cardiac gene expression making special emphasis in novel strategies to correct Ca(2+) handling alterations by means of SERCA2a gene therapy.


Assuntos
Sinalização do Cálcio/fisiologia , Cálcio/metabolismo , Metabolismo Energético/fisiologia , Regulação da Expressão Gênica/fisiologia , Contração Miocárdica/fisiologia , Miócitos Cardíacos/fisiologia , Calcineurina/metabolismo , Calsequestrina/metabolismo , Cardiomegalia/metabolismo , Insuficiência Cardíaca/metabolismo , Humanos , Proteínas de Domínio MADS/metabolismo , Fatores de Transcrição MEF2 , Modelos Biológicos , Miócitos Cardíacos/metabolismo , Fatores de Regulação Miogênica/metabolismo , Fatores de Transcrição NFATC/metabolismo , Retículo Sarcoplasmático/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo
16.
J Cell Commun Signal ; 15(3): 433-445, 2021 Sep.
Artigo em Inglês | MEDLINE | ID: mdl-33398721

RESUMO

Calcium (Ca2+) signaling has a major role in regulating a wide range of cellular mechanisms, including gene expression, proliferation, metabolism, cell death, muscle contraction, among others. Recent evidence suggests that ~ 1600 genes are related to the Ca2+ signaling. Some of these genes' expression is altered in several pathological conditions, including different cancer types, and epigenetic mechanisms are involved. However, their expression and regulation in hepatocellular carcinoma (HCC) and the liver are barely known. Here, we aimed to explore the expression of genes involved in the Ca2+-signaling in HCC, liver regeneration, and hepatocyte differentiation, and whether their expression is regulated by epigenetic mechanisms such as DNA methylation and histone posttranslational modifications (HPM). Results show that several Ca2+-signaling genes' expression is altered in HCC samples; among these, a subset of twenty-two correlate with patients' survival. DNA methylation correlates with eight of these genes' expression, and Guadecitabine, a hypomethylating agent, regulates the expression of seven down-regulated and three up-regulated genes in HepG2 cells. The down-regulated genes displayed a marked decrease of euchromatin histone marks, whereas up-regulated genes displayed gain in these marks. Additionally, the expression of these genes is modulated during liver regeneration and showed similar profiles between in vitro differentiated hepatocytes and liver-derived hepatocytes. In conclusion, some components of the Ca2+-signaling are altered in HCC and displayed a correlation with patients' survival. DNA methylation and HMP are an attractive target for future investigations to regulate their expression. Ca2+-signaling could be an important regulator of cell proliferation and differentiation in the liver.

17.
Oxid Med Cell Longev ; 2021: 9912434, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34239697

RESUMO

Pulmonary arterial hypertension (PAH) is characterized by pulmonary vessel remodeling; however, its severity and impact on survival depend on right ventricular (RV) failure. Resveratrol (RES), a polyphenol found in red wine, exhibits cardioprotective effects on RV dysfunction in PAH. However, most literature has focused on RES protective effect on lung vasculature; recent finding indicates that RES has a cardioprotective effect independent of pulmonary arterial pressure on RV dysfunction, although the underlying mechanism in RV has not been determined. Therefore, this study is aimed at evaluating sirtuin-3 (SIRT3) modulation by RES in RV using a monocrotaline- (MC-) induced PAH rat model. Myocyte function was evaluated by confocal microscopy as cell contractility, calcium signaling, and mitochondrial membrane potential (ΔΨm); cell energetics was assessed by high-resolution respirometry, and western blot and immunoprecipitation evaluated posttranslational modifications. PAH significantly affects mitochondrial function in RV; PAH is prone to mitochondrial permeability transition pore (mPTP) opening, thus decreasing the mitochondrial membrane potential. The compromised cellular energetics affects cardiomyocyte function by decreasing sarco-endoplasmic reticulum Ca2+-ATPase (SERCA) activity and delaying myofilament unbinding, disrupting cell relaxation. RES partially protects mitochondrial integrity by deacetylating cyclophilin-D, a critical component of the mPTP, increasing SIRT3 expression and activity and preventing mPTP opening. The preserved energetic capability rescues cell relaxation by maintaining SERCA activity. Avoiding Ca2+ transient and cell contractility mismatch by preserving mitochondrial function describes, for the first time, impairment in excitation-contraction-energetics coupling in RV failure. These results highlight the importance of mitochondrial energetics and mPTP in PAH.


Assuntos
Antioxidantes/uso terapêutico , Cálcio/metabolismo , Hipertensão Arterial Pulmonar/tratamento farmacológico , Resveratrol/uso terapêutico , Sirtuína 3/metabolismo , Disfunção Ventricular Direita/tratamento farmacológico , Animais , Antioxidantes/farmacologia , Humanos , Masculino , Ratos , Ratos Sprague-Dawley , Resveratrol/farmacologia
18.
Cell Calcium ; 91: 102285, 2020 11.
Artigo em Inglês | MEDLINE | ID: mdl-32942140

RESUMO

Calcium (Ca2+) signaling controls a wide range of cellular processes, including the hallmarks of cancer. The Ca2+ signaling system encompasses several types of proteins, such as receptors, channels, pumps, exchangers, buffers, and sensors, of which several are mutated or with altered expression in cancer cells. Since epigenetic mechanisms are disrupted in all stages of carcinogenesis, and reversibly regulate gene expression, they have been studied by different research groups to understand their role in Ca2+ signaling remodeling in cancer cells and the carcinogenic process. In this review, we link Ca2+ signaling, cancer, and epigenetics fields to generate a comprehensive landscape of this complex group of diseases.


Assuntos
Sinalização do Cálcio/genética , Carcinogênese/genética , Epigênese Genética , Animais , Cálcio/metabolismo , Homeostase , Humanos , Neoplasias/genética
19.
Arch Cardiol Mex ; 79(2): 147-56, 2009.
Artigo em Espanhol | MEDLINE | ID: mdl-19722387

RESUMO

Gene therapy as a therapeutic strategy for Heart Failure, is an area that within the last 10 years has experienced an important increase in research, becoming one of the most promising areas to obtain a successful therapy for heart failure due to the possibility of correcting the basic defects observed at the cellular level in this pathology. One of the first things to consider on the use of this therapy is the way to deliver the genetic material, Adenovirus, and Adeno-associated virus, have shown the best capabilities in the myocardium; the delivery by local means has shown best results when compared with peripheral administration. Multiple physiopathological mechanisms susceptible of modifying by gene therapy have been identified, including the regulation of Ca2+ fluxes during excitation-contraction coupling, altered intracellular signalling, and adrenergic system, blockade of apoptosis and angiogenesis. The objective of this review, is to made a recount about the status of the literature and analyze future perspectives for gene therapy.


Assuntos
Terapia Genética , Insuficiência Cardíaca/terapia , Técnicas de Transferência de Genes , Terapia Genética/métodos , Vetores Genéticos , Humanos
20.
Int J Biochem Cell Biol ; 113: 8-16, 2019 08.
Artigo em Inglês | MEDLINE | ID: mdl-31146004

RESUMO

Sarco(endo)plasmic reticulum Ca2+-ATPases (SERCA) expression is reduced or absent in several types of cancer and cancer cell lines; however, their expression and regulation in hepatocellular carcinoma (HCC) are unknown. Histone deacetylase inhibitors (HDACi) increase SERCA3 mRNA expression in gastric and breast cancer cell lines by increasing H3K9ac and binding of Sp1 and Sp3 transcription factors to the promoter; however, the molecular mechanism is not fully understood. Our results show that ATP2A3 (SERCA3) gene expression is decreased in human HCC samples and rat HCC AS-30D cells compared to normal liver, and HCC patients with high expression of ATP2A3 had longer overall survival than those with low expression. Sodium butyrate (NaB) and trichostatin A (TSA) increase SERCA3 mRNA expression in AS-30D cells, whereas SERCA2b mRNA expression did not change. NaB and TSA increase H3K9ac and H3K27ac in two ATP2A3 promoter regions. Besides, NaB treated cells increased Sp1 and Sp3 occupancy at ATP2A3 promoter; whereas TSA treated cells showed increased p300 levels at ATP2A3 promoter. Inhibition of p300 by C646, a specific inhibitor, mitigates SERCA3 mRNA induction by TSA, and reduces more than 70% of basal SERCA3 mRNA expression, suggesting that p300 is important for ATP2A3 gene transcription in AS-30D cells. Moreover, inhibition of p300 decreases H3K9ac in TSA treated cells. Our results provide evidence of decreased SERCA3 expression in human HCC samples and rat AS-30D cells and a correlation of SERCA3 expression with overall survival in HCC patients. Also, reveal new insights in SERCA3 transcriptional regulation mediated by HDACi.


Assuntos
Carcinoma Hepatocelular/metabolismo , Proteína p300 Associada a E1A/metabolismo , Inibidores de Histona Desacetilases/farmacologia , Neoplasias Hepáticas/metabolismo , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/biossíntese , Animais , Ácido Butírico/farmacologia , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Expressão Gênica/efeitos dos fármacos , Histonas/genética , Histonas/metabolismo , Humanos , Ácidos Hidroxâmicos/farmacologia , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Regiões Promotoras Genéticas , Ratos , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/genética , ATPases Transportadoras de Cálcio do Retículo Sarcoplasmático/metabolismo , Células Tumorais Cultivadas
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA