Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Inorg Chem ; 63(20): 9245-9251, 2024 May 20.
Artigo em Inglês | MEDLINE | ID: mdl-38700990

RESUMO

Halogenobismuthate(III) compounds are of recent interest because of their low toxicity and distinct electrical properties. The utility of these materials as ferroelectrics for piezoelectric energy harvesters is still in its early stages. Herein, we report a hybrid ammonium halogenobismuthate(III) [BPBrDMA]2·[BiBr5], crystallizing in a ferroelectrically active polar noncentrosymmetric Pna21 space group. Its noncentrosymmetric structure was confirmed by the detection of the second harmonic generation response. The ferroelectric P-E hysteresis loop measurements on the thin film sample of [BPBrDMA]2·[BiBr5] gave a saturation polarization (Ps) of 5.72 µC cm-2. The piezoresponse force microscopy analysis confirmed its ferroelectric and piezoelectric nature, showing characteristic domain structures and signature hysteresis and butterfly loops. The piezoelectric energy harvesting attributes of [BPBrDMA]2·[BiBr5] were further probed on its polylactic acid (PLA) composites. The 15 wt % [BPBrDMA]2·[BiBr5]-PLA polymer composite resulted in a high output voltage of 26.2 V and power density of 15.47 µW cm-2. The energy harvested from this device was further utilized for charging a 10 µF capacitor within 3 min.

2.
Molecules ; 29(2)2024 Jan 17.
Artigo em Inglês | MEDLINE | ID: mdl-38257367

RESUMO

We explore the crystal structure and luminescent properties of a new 1D organic-inorganic hybrid, MHy2SbI5, based on methylhydrazine. The compound reveals the red photoluminescence (PL) originating from the 5s2 electron pairs of Sb(III) as well as complex structural behavior. MHy2SbI5 crystalizes in two polymorphic forms (I and II) with distinct thermal properties and structural characteristics. Polymorph I adopts the acentric P212121 chiral space group confirmed by SHG, and, despite a thermally activated disorder of MHy, does not show any phase transitions, while polymorph II undergoes reversible low-temperature phase transition and high-temperature reconstructive transformation to polymorph I. The crystal structures of both forms consist of 1D perovskite zig-zag chains of corner-sharing SbI6 octahedra. The intriguing phase transition behavior of II is associated with the unstable arrangement of the [SbI5]2-∞ chains in the structure. The energy band gap (Eg) values, estimated based on the UV-Vis absorption spectra, indicate that both polymorphs have band gaps, with Eg values of 2.01 eV for polymorph I and 2.12 eV for polymorph II.

3.
Angew Chem Int Ed Engl ; 63(18): e202400366, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38446492

RESUMO

Within the burgeoning field of electronic materials, B-N Lewis acid-base pairs, distinguished by their partial charge distribution across boron and nitrogen centers, represent an underexplored class with significant potential. These materials exhibit inherent dipoles and are excellent candidates for ferroelectricity. However, the challenge lies in achieving the optimal combination of hard-soft acid-base pairs to yield B-N adducts with stable dipoles. Herein, we present an enantiomeric pair of B-N adducts [R/SC6H5CH(CH3)NH2BF3] (R/SMBA-BF3) crystallizing in the polar monoclinic P21 space group. The ferroelectric measurements on RMBA-BF3 gave a rectangular P-E hysteresis loop with a remnant polarization of 7.65 µC cm-2, a value that aligns with the polarization derived from the extensive density-functional theory computations. The PFM studies on the drop-casted film of RMBA-BF3 further corroborate the existence of ferroelectric domains, displaying characteristic amplitude-bias butterfly and phase-bias hysteresis loops. The piezoelectric nature of the RMBA-BF3 was confirmed by its direct piezoelectric coefficient (d33) value of 3.5 pC N-1 for its pellet. The piezoelectric energy harvesting applications on the sandwich devices fabricated from the as-made crystals of RMBA-BF3 gave an open circuit voltage (VPP) of 6.2 V. This work thus underscores the untapped potential of B-N adducts in the field of piezoelectric energy harvesting.

4.
Small ; 19(46): e2300792, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-37485599

RESUMO

Cyclophosphazenes offer a robust and easily modifiable platform for a diverse range of functional systems that have found applications in a wide variety of areas. Herein, for the first time, it reports an organophosphazene-based supramolecular ferroelectric [(PhCH2 NH)6 P3 N3 Me]I, [PMe]I. The compound crystallizes in the polar space group Pc and its thin-film sample exhibits remnant polarization of 5 µC cm-2 . Vector piezoresponse force microscopy (PFM) measurements indicated the presence of multiaxial polarization. Subsequently, flexible composites of [PMe]I are fabricated for piezoelectric energy harvesting applications using thermoplastic polyurethane (TPU) as the matrix. The highest open-circuit voltages of 13.7 V and the maximum power density of 34.60 µW cm-2 are recorded for the poled 20 wt.% [PMe]I/TPU device. To understand the molecular origins of the high performance of [PMe]I-based mechanical energy harvesting devices, piezoelectric charge tensor values are obtained from DFT calculations of the single crystal structure. These indicate that the mechanical stress-induced distortions in the [PMe]I crystals are facilitated by the high flexibility of the layered supramolecular assembly.

5.
Angew Chem Int Ed Engl ; 62(3): e202214984, 2023 Jan 16.
Artigo em Inglês | MEDLINE | ID: mdl-36408916

RESUMO

Hybrid materials possessing piezo- and ferroelectric properties emerge as excellent alternatives to conventional piezoceramics due to their merits of facile synthesis, lightweight nature, ease of fabrication and mechanical flexibility. Inspired by the structural stability of aminophosphonium compounds, here we report the first A3 BX6 type cyanometallate [Ph2 (i PrNH)2 P]3 [Fe(CN)6 ] (1), which shows a ferroelectric saturation polarization (Ps ) of 3.71 µC cm-2 . Compound 1 exhibits a high electrostrictive coefficient (Q33 ) of 0.73 m4  C-2 , far exceeding those of piezoceramics (0.034-0.096 m4  C-2 ). Piezoresponse force microscopy (PFM) analysis demonstrates the polarization switching and domain structure of 1 further confirming its ferroelectric nature. Furthermore, thermoplastic polyurethane (TPU) polymer composite films of 1 were prepared and employed as piezoelectric nanogenerators. Notably, the 15 wt % 1-TPU device gave a maximum output voltage of 13.57 V and a power density of 6.03 µW cm-2 .

6.
Chemistry ; 28(33): e202200751, 2022 Jun 10.
Artigo em Inglês | MEDLINE | ID: mdl-35357732

RESUMO

Bismuth containing hybrid molecular ferroelectrics are receiving tremendous attention in recent years owing to their stable and non-toxic composition. However, these perovskite-like structures are primarily limited to ammonium cations. Herein, we report a new phosphonium based discrete perovskite-like hybrid ferroelectric with a formula [Me(Ph)3 P]3 [Bi2 Br9 ] (MTPBB) and its mechanical energy harvesting capability. The Polarization-Electric field (P-E) measurements resulted in a well-defined ferroelectric hysteresis loop with a remnant polarization value of 2.1 µC cm-2 . Piezoresponse force microscopy experiments enabled visualization of the ferroelectric domain structure and evaluation of the piezoelectric strain coefficient (d33 ) for an MTPBB single crystal and thin film sample. Furthermore, flexible devices incorporating MTPBB in polydimethylsiloxane (PDMS) matrix at various concentrations were fabricated and explored for their mechanical energy harvesting properties. The champion device with 20 wt % of MTPBB in PDMS rendered a maximum peak-to-peak open-circuit voltage of 22.9 V and a maximum power density of 7 µW cm-2 at an optimal load of 4 MΩ. Moreover, the potential of MTPBB-based devices in low power electronics was demonstrated by storing the harvested energy in various electrolytic capacitors.

7.
Inorg Chem ; 61(47): 18990-18997, 2022 Nov 28.
Artigo em Inglês | MEDLINE | ID: mdl-36367986

RESUMO

The rational design of metal-organic frameworks (MOFs) is one of the driving forces behind the great success that this class of materials is experiencing. The so-called isoreticular approach is a key design tool, very often used to tune the size, steric properties, and additional functional groups of the linker used. In this work, we go one step further and show that even linkers with two different coordinating groups, namely, phosphonate and phosphinate, can form isoreticular MOFs. This effectively bridges the gap between MOFs utilizing phosphinate and phosphonate coordinating groups. Using a novel bifunctional ligand, 4-[hydroxy(methyl)phosphoryl]phenylphosphonic acid [H3PPP(Me)], we were able to prepare ICR-12, a MOF isoreticular to already published MOFs containing bisphosphinate linkers (e.g., ICR-4). An isostructural MOF ICR-13 was also successfully prepared using 1,4-benzenediphosphonic acid. We envisage that this strategy can be used to further enlarge the pool of MOFs.

8.
Inorg Chem ; 61(38): 15225-15238, 2022 Sep 26.
Artigo em Inglês | MEDLINE | ID: mdl-36102245

RESUMO

Hybrid organic-inorganic lead halide perovskites have emerged as promising materials for various applications, including solar cells, light-emitting devices, dielectrics, and optical switches. In this work, we report the synthesis, crystal structures, and linear and nonlinear optical as well as dielectric properties of three imidazolium lead bromides, IMPbBr3, IM2PbBr4, and IM3PbBr5 (IM+ = imidazolium). We show that these compounds exhibit three distinct structure types. IMPbBr3 crystallizes in the 4H-hexagonal perovskite structure with face- and corner-shared PbBr6 octahedra (space group P63/mmc at 295 K), IM2PbBr4 adopts a one-dimensional (1D) double-chain structure with edge-shared octahedra (space group P1̅ at 295 K), while IM3PbBr5 crystallizes in the 1D single-chain structure with corner-shared PbBr6 octahedra (space group P1̅ at 295 K). All compounds exhibit two structural phase transitions, and the lowest temperature phases of IMPbBr3 and IM3PbBr5 are noncentrosymmetric (space groups Pna21 at 190 K and P1 at 100 K, respectively), as confirmed by measurements of second-harmonic generation (SHG) activity. X-ray diffraction and thermal and Raman studies demonstrate that the phase transitions feature an order-disorder mechanism. The only exception is the isostructural P1̅ to P1̅ phase transition at 141 K in IM2PbBr4, which is of a displacive type. Dielectric studies reveal that IMPbBr3 is a switchable dielectric material, whereas IM3PbBr5 is an improper ferroelectric. All compounds exhibit broadband, highly shifted Stokes emissions. Features of these emissions, i.e., band gap and excitonic absorption, are discussed in relation to the different structures of each composition.

9.
Inorg Chem ; 61(39): 15520-15531, 2022 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-36130277

RESUMO

Two-dimensional (2D) lead halide perovskites are a family of materials at the heart of solar cell, light-emitting diode, and photodetector technologies. This perspective leads to a number of synthetic efforts toward materials of this class, including those with prescribed polar architectures. The methylhydrazinium (MHy+) cation was recently presumed to have an unusual capacity to generate non-centrosymmetric perovskite phases, despite its intrinsically nonchiral structure. Here, we witness this effect once again in the case of the Ruddlesden-Popper perovskite phase of formula MHy2PbCl4. MHy2PbCl4 features three temperature-dependent crystal phases, with two first-order phase transitions at T1 = 338.2 K (331.8 K) and T2 = 224.0 K (205.2 K) observed in the heating (cooling) modes, respectively. Observed transitions involve a transformation from high-temperature orthorhombic phase I, with the centrosymmetric space group Pmmn, through the room-temperature modulated phase II, with the average structure being isostructural to I, to the low-temperature monoclinic phase III, with non-centrosymmetric space group P21. The intermediate phase II is a rare example of a modulated structure in 2D perovskites, with Pmmn(00γ)s00 superspace symmetry and modulation vector q ≅ 0.25c*. MHy2PbCl4 beats the previous record of MHy2PbBr4 in terms of the shortest inorganic interlayer distance in 2D perovskites (8.79 Šat 350 K vs 8.66 Šat 295 K, respectively). The characteristics of phase transitions are explored with differential scanning calorimetry, dielectric, and Raman spectroscopies. The non-centrosymmetry of phase III is confirmed with second harmonic generation (SHG) measurements, and polarity is demonstrated by the pyroelectric effect. MHy2PbCl4 also exhibits thermochromism, with the photoluminescence (PL) color changing from purplish-blue at 80 K to bluish-green at 230 K. The demonstration of polar characteristics for one more member of the methylhydrazinium perovskites settles a debate about whether this approach can present value for the crystal engineering of acentric solids similar to that which was recently adopted by a so-called fluorine substitution effect.

10.
Photochem Photobiol Sci ; 19(10): 1382-1391, 2020 Oct 01.
Artigo em Inglês | MEDLINE | ID: mdl-32869822

RESUMO

The solvatochromic fluorophore Nile Red, 9-diethylamino-5H-benzo[a]phenoxazine-5-one, is one of the most commonly used stains to enhance contrast of lipid-rich areas of microscopic biosamples. Quite surprisingly, relatively little is known about the spectrally-resolved two-photon absorption (2PA) properties of this dye despite its promising features for two-photon microscopy of biological matter. For this reason, the two-photon solvatochromism of Nile Red still remains an uncharted territory as well. Also, no study has yet reported on how electron-withdrawing substituents attached to the Nile Red backbone affect its solvatochromic properties and two-photon brightness. In this paper, we demonstrate how solvent polarity influences the one- and two-photon absorption spectra of Nile Red as well as its fluorescence parameters, and we present new analogues that contain -CF3, -F and -Br substituents on its eastern side. Two-photon excited fluorescence experiments in a broad spectral range (780-1240 nm) and electronic structure calculations show that both the nature and location of the substituent have particular influence on the strength of 2PA, peaking in all cases at approx. 860 and 1050 nm. 2PA cross sections are higher at 1050 nm than at 860 nm, which suggests that Nile Red and its analogues are best suited for two-photon imaging employing excitation in the NIR-II optical transparency window of biological tissues.


Assuntos
Corantes Fluorescentes/química , Hidrocarbonetos Halogenados/química , Oxazinas/química , Fótons , Teoria da Densidade Funcional , Estrutura Molecular , Espectrometria de Fluorescência
11.
Inorg Chem ; 59(17): 11986-11994, 2020 Sep 08.
Artigo em Inglês | MEDLINE | ID: mdl-32799526

RESUMO

The preparation of materials featuring more than one ferroelectric phase represents a promising strategy for controlling electrical properties arising from spontaneous polarization, since it offers an added advantage of temperature-dependent toggling between two different ferroelectric states. Here, we report on the discovery of a unique ferroelectric-ferroelectric transition in diisopropylammonium tetrabromocadmate (DPAC, (C6H16N)2[CdBr4]) with a Tc value of 244 K, which is continuous in nature. Both phases crystallize in the same polar orthorhombic space group, Iab2. The temperature-resolved second-harmonic-generation (SHG) measurements using 800 nm femtosecond laser pulses attest to the polar structure of DPAC on either side of the phase transition (PT). The dc conductivity parameters were estimated in both solid phases. The anionic substructure is in the form of [CdBr4]2- discrete complexes (0D), while in the voids of the structure, the diisopropylammonium cations are embedded. The ferroelectric properties of phases I and II have been confirmed by the reversible pyroelectric effect as well as by P-E loop investigations. On the basis of the dielectric responses, the molecular mechanism of the PT at 244 K has been postulated to be of mixed type with an indication of its displacive nature.

12.
Chem Soc Rev ; 46(16): 4976-5004, 2017 Aug 14.
Artigo em Inglês | MEDLINE | ID: mdl-28621347

RESUMO

The building block modular approach that lies behind coordination polymers (CPs) and metal-organic frameworks (MOFs) results not only in a plethora of materials that can be obtained but also in a vast array of material properties that could be aimed at. Optical properties appear to be particularly predetermined by the character of individual structural units and by the intricate interplay between them. Indeed, the "design principles" shaping the optical properties of these materials seem to be well explored for luminescence and second-harmonic generation (SHG) phenomena; these have been covered in numerous previous reviews. Herein, we shine light on CPs and MOFs as optical media for state-of-the-art photonic phenomena such as multi-photon absorption, triplet-triplet annihilation (TTA) and stimulated emission. In the first part of this review we focus on the nonlinear optical (NLO) properties of CPs and MOFs, with a closer look at the two-photon absorption property. We discuss the scope of applicability of most commonly used measurement techniques (Z-scan and two-photon excited fluorescence (TPEF)) that can be applied for proper determination of the NLO properties of these materials; in particular, we suggest recommendations for their use, along with a discussion of the best reporting practices of NLO parameters. We also outline design principles, employing both intramolecular and intermolecular strategies, that are necessary for maximizing the NLO response. A review of recent literature on two-, three- and multi-photon absorption in CPs and MOFs is further supplemented with application-oriented processes such as two-photon 3D patterning and data storage. Additionally, we provide an overview of the latest achievements in the field of frequency doubling (SHG) and tripling (third-harmonic generation, THG) in these materials. Apart from nonlinear processes, in the next sections we also target the photonic properties of MOFs that benefit from their porosity, and resulting from this their ability to serve as containers for optically-active molecules. Thus, we survey dye@MOF composites as novel media in which efficient upconversion via triplet energy migration (TEM) occurs as well as materials for stimulated emission and multi-photon pumped lasing. Prospects for producing lasing as an intrinsic property of MOFs has also been discussed. Overall, further development of the optical processes highlighted herein should allow for realization of various photonic, data storage, biomedical and optoelectronic applications.

13.
Inorg Chem ; 55(19): 9501-9504, 2016 Oct 03.
Artigo em Inglês | MEDLINE | ID: mdl-27673339

RESUMO

The nonlinear-optical properties of Prussian Blue nanoparticles have been evaluated with the use of femtosecond Z-scan measurements in the 1350-1750 nm range. This well-known inorganic pigment having interesting magnetic and electrochemical properties was found to be an efficient near-IR three-photon absorber. The maximum of the effective three-photon cross section is as high as 4.5 × 10-78 cm6 s2 at 1375 nm. By a comparison of the three-photon molar-mass-normalized merit factors, σ3/M, we show that this material is a competitive multiphoton absorber, especially in comparison to semiconductor quantum dots.

14.
Inorg Chem ; 54(22): 10568-75, 2015 Nov 16.
Artigo em Inglês | MEDLINE | ID: mdl-26491884

RESUMO

Powder second-harmonic generation (SHG) efficiencies are usually measured at single wavelengths. In the present work, we provide a proof of concept of spectrally resolved powder SHG measured for a newly obtained series of three non-centrosymmetric coordination polymers (CPs). CPs are constructed from tetrahedral linker-tetraphenylmethane-based tetraphosphonate octaethyl ester and cobalt(II) ions of mixed, octahedral (Oh), and tetrahedral (Td), geometries and different sets of donors (CoO6 vs CoX3O). Isostructurality of the obtained materials allowed for the determination of anion-dependent tunability of SHG optical spectra and their relationship with solid-state absorption spectra.

15.
ACS Appl Mater Interfaces ; 16(22): 28829-28837, 2024 Jun 05.
Artigo em Inglês | MEDLINE | ID: mdl-38775136

RESUMO

The phenomenon of dielectric switching has garnered considerable attention due to its potential applications in electronic and photonic devices. Typically, hybrid organic-inorganic perovskites, HOIPs, exhibit a binary (low-high) dielectric state transition, which, while useful, represents only the tip of the iceberg in terms of functional relevance. One way to boost the versatility of applications is the discovery of materials capable of nonbinary switching schemes, such as three-state dielectric switching. The ideal candidate for that task would exhibit a trio of attributes: two reversible, first-order phase transitions across three distinct crystal phases, minimal thermal hysteresis, and pronounced, step-like variations in dielectric permittivity, with a substantial change in its real part. Here, we demonstrate a one-dimensional lead halide perovskite with the formula (CH3)2C(H)NH3)PbI3, abbreviated as ISOPrPbI3, that fulfills these criteria and demonstrates three-state dielectric switching within a narrow temperature range of ca. 45 K. Studies on ISOPrPbI3 also revealed the polar nature of the low-temperature phase III below 266 K through pyrocurrent experiments, and the noncentrosymmetric character of the intermediate phase II and low-temperature phase III is confirmed via second harmonic generation measurements. Additionally, luminescence studies of ISOPrPbI3 have demonstrated combined broadband and narrow emission properties. The introduction of ISOPrPbI3 as a three-state dielectric switch not only addresses the limitations posed by the wide thermal gap between dielectric states in previous materials but also opens new avenues for the development of nonbinary dielectric switchable materials.

16.
ACS Appl Mater Interfaces ; 16(20): 26406-26416, 2024 May 22.
Artigo em Inglês | MEDLINE | ID: mdl-38725337

RESUMO

Ionic cocrystals with hydrogen bonding can form exciting materials with enhanced optical and electronic properties. We present a highly moisture-stable ammonium salt cocrystal [CH3C6H4CH(CH3)NH2][CH3C6H4CH(CH3)NH3][PF6] ((p-TEA)(p-TEAH)·PF6) crystallizing in the polar monoclinic C2 space group. The asymmetry in (p-TEA)(p-TEAH)·PF6 was induced by its chiral substituents, while the polar order and structural stability were achieved by using the octahedral PF6- anion and the consequent formation of salt cocrystal. The ferroelectric properties of (p-TEA)(p-TEAH)·PF6 were confirmed through P-E loop measurements. Piezoresponse force microscopy (PFM) enabled the visualization of its domain structure with characteristic "butterfly" and hysteresis loops associated with ferro- and piezoelectric properties. Notably, (p-TEA)(p-TEAH)·PF6 exhibits a large electrostrictive coefficient (Q33) value of 2.02 m4 C-2, higher than those found for ceramic-based materials and comparable to that of polyvinylidene difluoride. Furthermore, the composite films of (p-TEA)(p-TEAH)·PF6 with polycaprolactone (PCL) polymer and its gyroid-shaped 3D-printed composite scaled-up device, 3DP-Gy, were prepared and evaluated for piezoelectric energy-harvesting functionality. A high output voltage of 22.8 V and a power density of 118.5 µW cm-3 have been recorded for the 3DP-Gy device. Remarkably, no loss in voltage outputs was observed for the (p-TEA)(p-TEAH)·PF6 devices even after exposure to 99% relative humidity, showcasing their utility under extremely humid conditions.

17.
Dalton Trans ; 53(16): 6906-6919, 2024 Apr 23.
Artigo em Inglês | MEDLINE | ID: mdl-38563080

RESUMO

This study revisits a (001)-oriented layered lead chloride templated by 1,2,4-triazolium, Tz2PbCl4, which recently has been an object of intense research but still suffers from gaps in characterization. Indeed, the divergent reports on the crystal structures of Tz2PbCl4 at various temperatures, devoid of independent verification of chiral phases through second harmonic generation (SHG), have led to an unresolved debate regarding the existence of a low-temperature phase transition (PT) and the noncentrosymmetric nature of the low-temperature phase. Now, by combining differential scanning calorimetry, single-crystal X-ray diffraction, dielectric, as well as linear and nonlinear optical spectroscopies on Tz2PbCl4, we reveal a sequence of reversible PTs at T1 = 361 K (phase I-II), T2 = 339 K (phase II-III), and T3 = 280 K (phase III-IV). No SHG activity could be registered for any of the four crystal phases, as checked by wide-temperature range SHG screening, supporting their centrosymmetry. The dipole relaxation processes indicate a decrease in activation energy with increasing temperature, from 0.60, 0.38, to 0.24 eV observed for phase IV (space group P21/c), phase III (Pnma), and phase II (Cmcm), respectively. This change is interpreted as a result of the diminishing strength of H-bonds as the system transforms from phase IV to III and subsequently to II. The weaker H-bonds facilitate the reorientation of Tz+ cations in the presence of an external electric field. The photoluminescence spectra of Tz2PbCl4 reveal an intriguing interplay of narrow and broadband emission, linked respectively to free excitons and excitons trapped on defects. Notably, as the temperature decreases from 300 K to 16 K, both the emission bands exhibit distinctive blue and red shifts, indicative of increased in-plane octahedral distortion. This dynamic behaviour transforms the photoluminescence of Tz2PbCl4 from greenish-blue at 300 K to yellowish-green at 13 K, enriching our understanding of 2D lead halide perovskites and highlighting the optoelectronic potential of Tz2PbCl4.

18.
Chem Commun (Camb) ; 59(20): 2919-2922, 2023 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-36799201

RESUMO

The ferroelectric behaviour of an octahedral cage [[Ni6(H2O)12(TPTA)8]·(NO3)12·36H2O] (1) exhibiting high remnant polarization of 25.31 µC cm-2 is discovered. For the first time, clear domain structures and the characteristic electromechanical responses are demonstrated using piezoresponsive force microscopy for a thin film of 1. Owing to its mechanical energy conversion capability, polymer composites of 1 were employed as efficient piezoelectric nanogenerators.

19.
Mater Horiz ; 10(8): 3153-3161, 2023 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-37227322

RESUMO

Three-dimensional printing (3DP) is an emerging technology to fabricate complex architectures, necessary to realize state-of-the-art flexible and wearable electronic devices. In this regard, top-performing devices containing organic ferro- and piezoelectric compounds are desired to circumvent significant shortcomings of conventional piezoceramics, e.g. toxicity and high-temperature device processibility. Herein, we report on a 3D-printed composite of a chiral ferroelectric organic salt {[Me3CCH(Me)NH3][BF4]} (1) with a biodegradable polycaprolactone (PCL) polymer that serves as a highly efficient piezoelectric nanogenerator (PENG). The ferroelectric property of 1 originates from its polar tetragonal space group P42, verified by P-E loop measurements. The ferroelectric domain characteristics of 1 were further probed by piezoresponse force microscopy (PFM), which gave characteristic 'butterfly' and hysteresis loops. The PFM amplitude vs. drive voltage measurements gave a relatively high magnitude of the converse piezoelectric coefficient for 1. PCL polymer composites with various weight percentages (wt%) of 1 were prepared and subjected to piezoelectric energy harvesting tests, which gave a maximum open-circuit voltage of 36.2 V and a power density of 48.1 µW cm-2 for the 10 wt% 1-PCL champion device. Furthermore, a gyroid-shaped 3D-printed 10 wt% 1-PCL composite was fabricated to test its practical utility, which gave an excellent output voltage of 41 V and a power density of 56.8 µW cm-2. These studies promise the potential of simple organic compounds for building PENG devices using advanced manufacturing technologies.

20.
J Phys Chem Lett ; 14(19): 4524-4531, 2023 May 18.
Artigo em Inglês | MEDLINE | ID: mdl-37159252

RESUMO

Halobismuthates(III) and haloantimonates(III) with the R3MX6 chemical composition create a new and broadly unexplored class of ferroelectric compounds. In this paper, we report the haloantimonate(III) ferroelectric comprising an aromatic (1,2,4-triazolium) cation, i.e., (C2N3H4)3[SbBr6] (TBA). Temperature-resolved structural and spectroscopic studies indicate that TBA undergoes two solid-solid phase transitions between tetragonal [P42/m (I)] and monoclinic [P21/n (II) and P21 (III)] phases. TBA experiences a paraelectric-ferroelectric phase transition at 271/268 K (II-III) driven by "order-disorder" and "displacive" molecular mechanisms. The ferroelectric properties of phase III have been confirmed by hysteresis loop measurement, and additionally, the acentric order has been further supported by second-harmonic generation measurements. Insight into the molecular origins of the ferroelectric polarization was provided by periodic ab initio calculations using the Berry phase approach at the density functional theory (DFT-D3) method level employed for calculations of spontaneous polarization.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA