Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 28
Filtrar
1.
Proc Natl Acad Sci U S A ; 119(32): e2116289119, 2022 08 09.
Artigo em Inglês | MEDLINE | ID: mdl-35917342

RESUMO

Glioblastoma (GBM) is an aggressive malignant primary brain tumor with limited therapeutic options. We show that the angiotensin II (AngII) type 2 receptor (AT2R) is a therapeutic target for GBM and that AngII, endogenously produced in GBM cells, promotes proliferation through AT2R. We repurposed EMA401, an AT2R antagonist originally developed as a peripherally restricted analgesic, for GBM and showed that it inhibits the proliferation of AT2R-expressing GBM spheroids and blocks their invasiveness and angiogenic capacity. The crystal structure of AT2R bound to EMA401 was determined and revealed the receptor to be in an active-like conformation with helix-VIII blocking G-protein or ß-arrestin recruitment. The architecture and interactions of EMA401 in AT2R differ drastically from complexes of AT2R with other relevant compounds. To enhance central nervous system (CNS) penetration of EMA401, we exploited the crystal structure to design an angiopep-2-tethered EMA401 derivative, A3E. A3E exhibited enhanced CNS penetration, leading to reduced tumor volume, inhibition of proliferation, and increased levels of apoptosis in an orthotopic xenograft model of GBM.


Assuntos
Bloqueadores do Receptor Tipo 2 de Angiotensina II , Compostos Benzidrílicos , Neoplasias Encefálicas , Reposicionamento de Medicamentos , Glioblastoma , Isoquinolinas , Receptor Tipo 2 de Angiotensina , Analgésicos/farmacologia , Angiotensina II/química , Angiotensina II/farmacologia , Bloqueadores do Receptor Tipo 2 de Angiotensina II/uso terapêutico , Apoptose , Compostos Benzidrílicos/química , Compostos Benzidrílicos/farmacologia , Compostos Benzidrílicos/uso terapêutico , Neoplasias Encefálicas/tratamento farmacológico , Glioblastoma/tratamento farmacológico , Humanos , Isoquinolinas/química , Isoquinolinas/farmacologia , Isoquinolinas/uso terapêutico , Conformação Proteica em alfa-Hélice , Receptor Tipo 2 de Angiotensina/química , Receptor Tipo 2 de Angiotensina/metabolismo , Carga Tumoral/efeitos dos fármacos
2.
Mol Pharmacol ; 105(4): 301-312, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38346795

RESUMO

Atypical chemokine receptor 3 (ACKR3), formerly referred to as CXCR7, is considered to be an interesting drug target. In this study, we report on the synthesis, pharmacological characterization and radiolabeling of VUF15485, a new ACKR3 small-molecule agonist, that will serve as an important new tool to study this ß-arrestin-biased chemokine receptor. VUF15485 binds with nanomolar affinity (pIC50 = 8.3) to human ACKR3, as measured in [125I]CXCL12 competition binding experiments. Moreover, in a bioluminescence resonance energy transfer-based ß-arrestin2 recruitment assay VUF15485 acts as a potent ACKR3 agonist (pEC50 = 7.6) and shows a similar extent of receptor activation compared with CXCL12 when using a newly developed, fluorescence resonance energy transfer-based ACKR3 conformational sensor. Moreover, the ACKR3 agonist VUF15485, tested against a (atypical) chemokine receptor panel (agonist and antagonist mode), proves to be selective for ACKR3. VUF15485 labeled with tritium at one of its methoxy groups ([3H]VUF15485), binds ACKR3 saturably and with high affinity (K d = 8.2 nM). Additionally, [3H]VUF15485 shows rapid binding kinetics and consequently a short residence time (<2 minutes) for binding to ACKR3. The selectivity of [3H]VUF15485 for ACKR3, was confirmed by binding studies, whereupon CXCR3, CXCR4, and ACKR3 small-molecule ligands were competed for binding against the radiolabeled agonist. Interestingly, the chemokine ligands CXCL11 and CXCL12 are not able to displace the binding of [3H]VUF15485 to ACKR3. The radiolabeled VUF15485 was subsequently used to evaluate its binding pocket. Site-directed mutagenesis and docking studies using a recently solved cryo-EM structure propose that VUF15485 binds in the major and the minor binding pocket of ACKR3. SIGNIFICANCE STATEMENT: The atypical chemokine receptor atypical chemokine receptor 3 (ACKR3) is considered an interesting drug target in relation to cancer and multiple sclerosis. The study reports on new chemical biology tools for ACKR3, i.e., a new agonist that can also be radiolabeled and a new ACKR3 conformational sensor, that both can be used to directly study the interaction of ACKR3 ligands with the G protein-coupled receptor.


Assuntos
Quimiocina CXCL12 , Receptores CXCR4 , Humanos , Receptores CXCR4/metabolismo , Quimiocina CXCL12/metabolismo , Quimiocina CXCL11/metabolismo , Transdução de Sinais , Ligantes , Ligação Competitiva
3.
J Chem Inf Model ; 63(21): 6696-6705, 2023 11 13.
Artigo em Inglês | MEDLINE | ID: mdl-37831965

RESUMO

Photoswitchable (PSW) molecules offer an attractive opportunity for the optical control of biological processes. However, the successful design of such compounds remains a challenging multioptimization endeavor, resulting in several biological target classes still relatively poorly explored by photoswitchable ligands, as is the case for G protein-coupled receptors (GPCRs). Here, we present the PSW-Designer, a fully open-source computational platform, implemented in the KNIME Analytics Platform, to design and virtually screen novel photoswitchable ligands for photopharmacological applications based on privileged scaffolds. We demonstrate the applicability of the PSW-Designer to GPCRs and assess its predictive capabilities via two retrospective case studies. Furthermore, by leveraging bioactivity information on known ligands, typical and atypical strategies for photoswitchable group incorporation, and the increasingly structural information available for biological targets, the PSW-Design will facilitate the design of novel photoswitchable molecules with improved photopharmacological properties and increased binding affinity shifts upon illumination for GPCRs and many other protein targets.


Assuntos
Receptores Acoplados a Proteínas G , Estudos Retrospectivos , Receptores Acoplados a Proteínas G/química , Ligantes
4.
Pharmacol Rev ; 71(4): 571-595, 2019 10.
Artigo em Inglês | MEDLINE | ID: mdl-31551350

RESUMO

Endogenous ions play important roles in the function and pharmacology of G-protein coupled receptors (GPCRs). Historically the evidence for ionic modulation of GPCR function dates to 1973 with studies of opioid receptors, where it was demonstrated that physiologic concentrations of sodium allosterically attenuated agonist binding. This Na+-selective effect was distinct from effects of other monovalent and divalent cations, with the latter usually counteracting sodium's negative allosteric modulation of binding. Since then, numerous studies documenting the effects of mono- and divalent ions on GPCR function have been published. While ions can act selectively and nonselectively at many sites in different receptors, the discovery of the conserved sodium ion site in class A GPCR structures in 2012 revealed the unique nature of Na+ site, which has emerged as a near-universal site for allosteric modulation of class A GPCR structure and function. In this review, we synthesize and highlight recent advances in the functional, biophysical, and structural characterization of ions bound to GPCRs. Taken together, these findings provide a molecular understanding of the unique roles of Na+ and other ions as GPCR allosteric modulators. We will also discuss how this knowledge can be applied to the redesign of receptors and ligand probes for desired functional and pharmacological profiles. SIGNIFICANCE STATEMENT: The function and pharmacology of GPCRs strongly depend on the presence of mono and divalent ions in experimental assays and in living organisms. Recent insights into the molecular mechanism of this ion-dependent allosterism from structural, biophysical, biochemical, and computational studies provide quantitative understandings of the pharmacological effects of drugs in vitro and in vivo and open new avenues for the rational design of chemical probes and drug candidates with improved properties.


Assuntos
Receptores Acoplados a Proteínas G/antagonistas & inibidores , Receptores Acoplados a Proteínas G/metabolismo , Sódio/metabolismo , Sítio Alostérico , Ânions/química , Ânions/metabolismo , Sítios de Ligação , Cátions Bivalentes/química , Cátions Bivalentes/metabolismo , Cátions Monovalentes/química , Cátions Monovalentes/metabolismo , Cloretos/química , Cloretos/metabolismo , Cristalografia por Raios X , Humanos , Ligantes , Conformação Proteica , Receptores Acoplados a Proteínas G/química , Sódio/química , Relação Estrutura-Atividade , Zinco/química , Zinco/metabolismo
5.
Nat Chem Biol ; 15(1): 11-17, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30510194

RESUMO

Misoprostol is a life-saving drug in many developing countries for women at risk of post-partum hemorrhaging owing to its affordability, stability, ease of administration and clinical efficacy. However, misoprostol lacks receptor and tissue selectivities, and thus its use is accompanied by a number of serious side effects. The development of pharmacological agents combining the advantages of misoprostol with improved selectivity is hindered by the absence of atomic details of misoprostol action in labor induction. Here, we present the 2.5 Å resolution crystal structure of misoprostol free-acid form bound to the myometrium labor-inducing prostaglandin E2 receptor 3 (EP3). The active state structure reveals a completely enclosed binding pocket containing a structured water molecule that coordinates misoprostol's ring structure. Modeling of selective agonists in the EP3 structure reveals rationales for selectivity. These findings will provide the basis for the next generation of uterotonic drugs that will be suitable for administration in low resource settings.


Assuntos
Misoprostol/química , Receptores de Prostaglandina E Subtipo EP3/química , Receptores de Prostaglandina E Subtipo EP3/metabolismo , Sítios de Ligação , Cristalografia por Raios X , Dinoprostona/análogos & derivados , Dinoprostona/química , Dinoprostona/metabolismo , Humanos , Misoprostol/metabolismo , Simulação de Acoplamento Molecular , Mutagênese Sítio-Dirigida , Conformação Proteica , Receptores de Prostaglandina E Subtipo EP3/agonistas , Receptores de Prostaglandina E Subtipo EP3/genética , Transdução de Sinais , Água/química
6.
Nat Chem Biol ; 15(2): 206, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30573766

RESUMO

In the version of this article originally published, the present address for Petr Popov was incorrectly listed as 'Koltech Institute of Science & Technology, Moscow, Russia'. The correct present address is 'Skolkovo Institute of Science and Technology, Moscow, Russia'. The error has been corrected in the HTML and PDF versions of the paper.

7.
Drug Discov Today Technol ; 40: 36-42, 2021 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-34916020

RESUMO

One of the remaining bottlenecks in fragment-based drug design (FBDD) is the initial exploration and optimization of the identified hit fragments. There is a growing interest in computational approaches that can guide these efforts by predicting the binding affinity of newly designed analogues. Among others, alchemical free energy (AFE) calculations promise high accuracy at a computational cost that allows their application during lead optimization campaigns. In this review, we discuss how AFE could have a strong impact in fragment evolution, and we raise awareness on the challenges that could be encountered applying this methodology in FBDD studies.

8.
Int J Mol Sci ; 22(7)2021 Apr 02.
Artigo em Inglês | MEDLINE | ID: mdl-33918180

RESUMO

The Exome Aggregation Consortium has collected the protein-encoding DNA sequences of almost 61,000 unrelated humans. Analysis of this dataset for G protein-coupled receptor (GPCR) proteins (available at GPCRdb) revealed a total of 463 naturally occurring genetic missense variations in the histamine receptor family. In this research, we have analyzed the distribution of these missense variations in the four histamine receptor subtypes concerning structural segments and sites important for GPCR function. Four missense variants R1273.52×52H, R13934.57×57H, R4096.29×29H, and E4106.30×30K, were selected for the histamine H1 receptor (H1R) that were hypothesized to affect receptor activity by interfering with the interaction pattern of the highly conserved D(E)RY motif, the so-called ionic lock. The E4106.30×30K missense variant displays higher constitutive activity in G protein signaling as compared to wild-type H1R, whereas the opposite was observed for R1273.52×52H, R13934.57×57H, and R4096.29×29H. The E4106.30×30K missense variant displays a higher affinity for the endogenous agonist histamine than wild-type H1R, whereas antagonist affinity was not affected. These data support the hypothesis that the E4106.30×30K mutation shifts the equilibrium towards active conformations. The study of these selected missense variants gives additional insight into the structural basis of H1R activation and, moreover, highlights that missense variants can result in pharmacologically different behavior as compared to wild-type receptors and should consequently be considered in the drug discovery process.


Assuntos
Receptores Histamínicos H1/genética , Proteínas de Ligação ao GTP/metabolismo , Células HEK293 , Humanos , Mutação de Sentido Incorreto , Receptores Histamínicos H1/metabolismo
9.
J Am Chem Soc ; 141(36): 14210-14219, 2019 09 11.
Artigo em Inglês | MEDLINE | ID: mdl-31418572

RESUMO

Peptide agonists of GPCRs and other receptors are powerful signaling molecules with high potential as biological tools and therapeutics, but they are typically plagued by instability and short half-lives in vivo. Nature uses protein glycosylation to increase the serum stability of secreted proteins. However, these extracellular modifications are complex and heterogeneous in structure, making them an impractical solution. In contrast, intracellular proteins are subjected to a simple version of glycosylation termed O-GlcNAc modification. In our studies of this modification, we found that O-GlcNAcylation inhibits proteolysis, and strikingly, this stabilization occurs despite large distances in primary sequence (10-15 amino acids) between the O-GlcNAc and the site of cleavage. We therefore hypothesized that this "remote stabilization" concept could be useful to engineer the stability and potentially additional properties of peptide or protein therapeutics. Here, we describe the application of O-GlcNAcylation to two clinically important peptides: glucagon-like peptide-1 (GLP-1) and the parathyroid hormone (PTH), which respectively help control glucose and calcium levels in the blood. For both peptides, we found O-GlcNAcylated analogs that are equipotent to unmodified peptide in cell-based activation assays, while several GLP-1 analogs were biased agonists relative to GLP-1. As we predicted, O-GlcNAcylation can improve the stability of both GLP-1 and PTH in serum despite the fact that the O-GlcNAc can be quite remote from characterized sites of peptide cleavage. The O-GlcNAcylated GLP-1 and PTH also displayed significantly improved in vivo activity. Finally, we employed structure-based molecular modeling and receptor mutagenesis to predict how O-GlcNAcylation can be accommodated by the receptors and the potential interactions that contribute to peptide activity. This approach demonstrates the potential of O-GlcNAcylation for generating analogs of therapeutic peptides with enhanced proteolytic stability.


Assuntos
Peptídeo 1 Semelhante ao Glucagon/farmacologia , Hormônio Paratireóideo/farmacologia , Engenharia de Proteínas , Receptores Acoplados a Proteínas G/agonistas , Peptídeo 1 Semelhante ao Glucagon/sangue , Peptídeo 1 Semelhante ao Glucagon/química , Glicosilação , Humanos , Hormônio Paratireóideo/sangue , Hormônio Paratireóideo/química , Conformação Proteica , Receptores Acoplados a Proteínas G/metabolismo
10.
Chembiochem ; 20(5): 683-692, 2019 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-30565820

RESUMO

Pairwise crosslinking is a powerful technique to characterize interactions between G protein coupled receptors and their ligands in the live cell. In this work, the "thiol trapping" method, which exploits the proximity-enhanced reaction between haloacetamides and cysteine, is examined to identify intermolecular pairs of vicinal positions. By incorporating cysteine into the corticotropin-releasing factor receptor and either α-chloro- or α-bromoacetamide groups into its ligands, it is shown that thiol trapping provides highly reproducible signals and a low background, and represents a valid alternative to classical "disulfide trapping". The method is advantageous if reducing agents are required during sample analysis. Moreover, it can provide partially distinct spatial constraints, thus giving access to a wider dataset for molecular modeling. Finally, by applying recombinant mini-Gs, GTPγS, and Gαs-depleted HEK293 cells to modulate Gs coupling, it is shown that yields of crosslinking increase in the presence of elevated levels of Gs.


Assuntos
Peptídeos/metabolismo , Receptores de Hormônio Liberador da Corticotropina/química , Cisteína/química , Dissulfetos/química , Células HEK293 , Humanos , Ligantes , Modelos Moleculares , Ligação Proteica , Conformação Proteica
11.
Nucleic Acids Res ; 44(D1): D542-7, 2016 Jan 04.
Artigo em Inglês | MEDLINE | ID: mdl-26432833

RESUMO

In order to boost the identification of low-molecular-weight drugs on protein-protein interactions (PPI), it is essential to properly collect and annotate experimental data about successful examples. This provides the scientific community with the necessary information to derive trends about privileged physicochemical properties and chemotypes that maximize the likelihood of promoting a given chemical probe to the most advanced stages of development. To this end we have developed iPPI-DB (freely accessible at http://www.ippidb.cdithem.fr), a database that contains the structure, some physicochemical characteristics, the pharmacological data and the profile of the PPI targets of several hundreds modulators of protein-protein interactions. iPPI-DB is accessible through a web application and can be queried according to two general approaches: using physicochemical/pharmacological criteria; or by chemical similarity to a user-defined structure input. In both cases the results are displayed as a sortable and exportable datasheet with links to external databases such as Uniprot, PubMed. Furthermore each compound in the table has a link to an individual ID card that contains its physicochemical and pharmacological profile derived from iPPI-DB data. This includes information about its binding data, ligand and lipophilic efficiencies, location in the PPI chemical space, and importantly similarity with known drugs, and links to external databases like PubChem, and ChEMBL.


Assuntos
Bases de Dados de Proteínas , Descoberta de Drogas , Mapeamento de Interação de Proteínas , Internet , Preparações Farmacêuticas/química , Proteínas/efeitos dos fármacos
12.
J Neuroinflammation ; 14(1): 105, 2017 05 12.
Artigo em Inglês | MEDLINE | ID: mdl-28494768

RESUMO

BACKGROUND: The influx of leukocytes into the central nervous system (CNS) is a key hallmark of the chronic neuro-inflammatory disease multiple sclerosis (MS). Strategies that aim to inhibit leukocyte migration across the blood-brain barrier (BBB) are therefore regarded as promising therapeutic approaches to combat MS. As the CD40L-CD40 dyad signals via TNF receptor-associated factor 6 (TRAF6) in myeloid cells to induce inflammation and leukocyte trafficking, we explored the hypothesis that specific inhibition of CD40-TRAF6 interactions can ameliorate neuro-inflammation. METHODS: Human monocytes were treated with a small molecule inhibitor (SMI) of CD40-TRAF6 interactions (6877002), and migration capacity across human brain endothelial cells was measured. To test the therapeutic potential of the CD40-TRAF6-blocking SMI under neuro-inflammatory conditions in vivo, Lewis rats and C57BL/6J mice were subjected to acute experimental autoimmune encephalomyelitis (EAE) and treated with SMI 6877002 for 6 days (rats) or 3 weeks (mice). RESULTS: We here show that a SMI of CD40-TRAF6 interactions (6877002) strongly and dose-dependently reduces trans-endothelial migration of human monocytes. Moreover, upon SMI treatment, monocytes displayed a decreased production of ROS, tumor necrosis factor (TNF), and interleukin (IL)-6, whereas the production of the anti-inflammatory cytokine IL-10 was increased. Disease severity of EAE was reduced upon SMI treatment in rats, but not in mice. However, a significant reduction in monocyte-derived macrophages, but not in T cells, that had infiltrated the CNS was eminent in both models. CONCLUSIONS: Together, our results indicate that SMI-mediated inhibition of the CD40-TRAF6 pathway skews human monocytes towards anti-inflammatory cells with reduced trans-endothelial migration capacity, and is able to reduce CNS-infiltrated monocyte-derived macrophages during neuro-inflammation, but minimally ameliorates EAE disease severity. We therefore conclude that SMI-mediated inhibition of the CD40-TRAF6 pathway may represent a beneficial treatment strategy to reduce monocyte recruitment and macrophage activation in the CNS and has the potential to be used as a co-treatment to combat MS.


Assuntos
Anti-Inflamatórios/uso terapêutico , Antígenos CD40/metabolismo , Encefalomielite Autoimune Experimental/tratamento farmacológico , Monócitos/efeitos dos fármacos , Fator 6 Associado a Receptor de TNF/metabolismo , Animais , Anti-Inflamatórios/farmacologia , Movimento Celular/efeitos dos fármacos , Movimento Celular/genética , Células Cultivadas , Cerebelo/metabolismo , Modelos Animais de Doenças , Encefalomielite Autoimune Experimental/induzido quimicamente , Encefalomielite Autoimune Experimental/patologia , Regulação da Expressão Gênica/efeitos dos fármacos , Regulação da Expressão Gênica/imunologia , Humanos , Metaloproteinase 9 da Matriz/genética , Metaloproteinase 9 da Matriz/metabolismo , Camundongos , Monócitos/imunologia , Glicoproteína Mielina-Oligodendrócito/toxicidade , Óxido Nítrico Sintase Tipo I/metabolismo , Fragmentos de Peptídeos/toxicidade , Ratos , Ratos Endogâmicos Lew , Espécies Reativas de Oxigênio/metabolismo , Medula Espinal/metabolismo , Fator de Necrose Tumoral alfa/metabolismo
13.
Proc Natl Acad Sci U S A ; 111(7): 2686-91, 2014 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-24492375

RESUMO

The immune system plays an instrumental role in obesity and insulin resistance. Here, we unravel the role of the costimulatory molecule CD40 and its signaling intermediates, TNF receptor-associated factors (TRAFs), in diet-induced obesity (DIO). Although not exhibiting increased weight gain, male CD40(-/-) mice in DIO displayed worsened insulin resistance, compared with wild-type mice. This worsening was associated with excessive inflammation of adipose tissue (AT), characterized by increased accumulation of CD8(+) T cells and M1 macrophages, and enhanced hepatosteatosis. Mice with deficient CD40-TRAF2/3/5 signaling in MHCII(+) cells exhibited a similar phenotype in DIO as CD40(-/-) mice. In contrast, mice with deficient CD40-TRAF6 signaling in MHCII(+) cells displayed no insulin resistance and showed a reduction in both AT inflammation and hepatosteatosis in DIO. To prove the therapeutic potential of inhibition of CD40-TRAF6 in obesity, DIO mice were treated with a small-molecule inhibitor that we designed to specifically block CD40-TRAF6 interactions; this compound improved insulin sensitivity, reduced AT inflammation, and decreased hepatosteatosis. Our study reveals that the CD40-TRAF2/3/5 signaling pathway in MHCII(+) cells protects against AT inflammation and metabolic complications associated with obesity whereas CD40-TRAF6 interactions in MHCII(+) cells aggravate these complications. Inhibition of CD40-TRAF6 signaling by our compound may provide a therapeutic option in obesity-associated insulin resistance.


Assuntos
Antígenos CD40/metabolismo , Resistência à Insulina/imunologia , Obesidade/imunologia , Transdução de Sinais/imunologia , Fator 6 Associado a Receptor de TNF/metabolismo , Tecido Adiposo/citologia , Tecido Adiposo/imunologia , Tecido Adiposo/patologia , Análise de Variância , Animais , Compostos Azo , Antígenos CD40/antagonistas & inibidores , Antígenos CD40/genética , Linfócitos T CD8-Positivos/imunologia , Calorimetria , Fígado Gorduroso/etiologia , Fígado Gorduroso/patologia , Citometria de Fluxo , Ligantes , Espectroscopia de Ressonância Magnética , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Knockout , Obesidade/complicações , Reação em Cadeia da Polimerase em Tempo Real , Transdução de Sinais/efeitos dos fármacos , Ressonância de Plasmônio de Superfície , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores
14.
J Chem Inf Model ; 55(2): 294-307, 2015 Feb 23.
Artigo em Inglês | MEDLINE | ID: mdl-25622654

RESUMO

The CD154-CD40 receptor complex plays a pivotal role in several inflammatory pathways. Attempts to inhibit the formation of this complex have resulted in systemic side effects. Downstream inhibition of the CD40 signaling pathway therefore seems a better way to ameliorate inflammatory disease. To relay a signal, the CD40 receptor recruits adapter proteins called tumor necrosis factor receptor-associated factors (TRAFs). CD40-TRAF6 interactions are known to play an essential role in several inflammatory diseases. We used in silico, in vitro, and in vivo experiments to identify and characterize compounds that block CD40-TRAF6 interactions. We present in detail our drug docking and optimization pipeline and show how we used it to find lead compounds that reduce inflammation in models of peritonitis and sepsis. These compounds appear to be good leads for drug development, given the observed absence of side effects and their demonstrated efficacy for peritonitis and sepsis in mouse models.


Assuntos
Anti-Inflamatórios/química , Anti-Inflamatórios/farmacologia , Antígenos CD40/antagonistas & inibidores , Descoberta de Drogas/métodos , Bibliotecas de Moléculas Pequenas , Fator 6 Associado a Receptor de TNF/antagonistas & inibidores , Animais , Anti-Inflamatórios/toxicidade , Linhagem Celular , Bases de Dados de Compostos Químicos , Ensaios de Triagem em Larga Escala , Inflamação/genética , Inflamação/metabolismo , Ligantes , Masculino , Camundongos , Camundongos Endogâmicos C57BL , Modelos Moleculares , Simulação de Acoplamento Molecular , Fragmentos de Peptídeos/química , Fragmentos de Peptídeos/farmacologia , Peritonite/tratamento farmacológico , Ligação Proteica , Sepse/tratamento farmacológico
15.
Biochem Pharmacol ; : 116396, 2024 Jun 26.
Artigo em Inglês | MEDLINE | ID: mdl-38942089

RESUMO

This study introduces (S)-Opto-prop-2, a second-generation photoswitchable ligand designed for precise modulation of ß2-adrenoceptor (ß2AR). Synthesised by incorporating an azobenzene moiety with propranolol, (S)-Opto-prop-2 exhibited a high PSScis (photostationary state for cis isomer) percentage (∼90 %) and a favourable half-life (>10 days), facilitating diverse bioassay measurements. In vitro, the cis-isomer displayed substantially higher ß2AR binding affinity than the trans-isomer (1000-fold), making (S)-Opto-prop-2 one of the best photoswitchable GPCR (G protein-coupled receptor) ligands reported so far. Molecular docking of (S)-Opto-prop-2 in the X-ray structure of propranolol-bound ß2AR followed by site-directed mutagenesis studies, identified D1133.32, N3127.39 and F2896.51 as crucial residues that contribute to ligand-receptor interactions at the molecular level. In vivo efficacy was assessed using a rabbit ocular hypertension model, revealing that the cis isomer mimicked propranolol's effects in reducing intraocular pressure, while the trans isomer was inactive. Dynamic optical modulation of ß2AR by (S)-Opto-prop-2 was demonstrated in two different cAMP bioassays and using live-cell confocal imaging, indicating reversible and dynamic control of ß2AR activity using the new photopharmacology tool. In conclusion, (S)-Opto-prop-2 emerges as a promising photoswitchable ligand for precise and reversible ß2AR modulation with light. The new tool shows superior cis-on binding affinity, one of the largest reported differences in affinity (1000-fold) between its two configurations, in vivo efficacy, and dynamic modulation. This study contributes valuable insights into the evolving field of photopharmacology, offering a potential avenue for targeted therapy in ß2AR-associated pathologies.

16.
Nat Commun ; 14(1): 1151, 2023 03 01.
Artigo em Inglês | MEDLINE | ID: mdl-36859440

RESUMO

Understanding the molecular basis of arrestin-mediated regulation of GPCRs is critical for deciphering signaling mechanisms and designing functional selectivity. However, structural studies of GPCR-arrestin complexes are hampered by their highly dynamic nature. Here, we dissect the interaction of arrestin-2 (arr2) with the secretin-like parathyroid hormone 1 receptor PTH1R using genetically encoded crosslinking amino acids in live cells. We identify 136 intermolecular proximity points that guide the construction of energy-optimized molecular models for the PTH1R-arr2 complex. Our data reveal flexible receptor elements missing in existing structures, including intracellular loop 3 and the proximal C-tail, and suggest a functional role of a hitherto overlooked positively charged region at the arrestin N-edge. Unbiased MD simulations highlight the stability and dynamic nature of the complex. Our integrative approach yields structural insights into protein-protein complexes in a biologically relevant live-cell environment and provides information inaccessible to classical structural methods, while also revealing the dynamics of the system.


Assuntos
Aminoácidos , Receptor Tipo 1 de Hormônio Paratireóideo , beta-Arrestina 1 , beta-Arrestina 1/química , Modelos Moleculares , Receptor Tipo 1 de Hormônio Paratireóideo/química
17.
Chembiochem ; 13(12): 1785-90, 2012 Aug 13.
Artigo em Inglês | MEDLINE | ID: mdl-22821810

RESUMO

Enzyme-specific activation and the substrate mimetics strategy are effective ways to circumvent the limited substrate recognition often encountered in protease-catalyzed peptide synthesis. A key structural element in both approaches is the guanidinophenyl (OGp) ester, which enables important interactions for affinity and recognition by the enzyme--at least, this is usually the explanation given for its successful application. In this study we show that leaving group ability is of equal or even greater importance. To this end we used both experimental and computational methods: 1) synthesis of close analogues of OGp, and their evaluation in a dipeptide synthesis assay with trypsin, 2) molecular docking studies to provide insights into the binding mode, and 3) ab initio calculations to evaluate their electronic properties.


Assuntos
Dipeptídeos/síntese química , Tripsina/química , Biocatálise , Bioensaio , Ativação Enzimática , Ésteres , Ligação de Hidrogênio , Hidrólise , Modelos Moleculares , Mimetismo Molecular , Conformação Proteica , Teoria Quântica , Soluções , Especificidade por Substrato , Tripsina/metabolismo
18.
Chembiochem ; 13(9): 1319-26, 2012 Jun 18.
Artigo em Inglês | MEDLINE | ID: mdl-22615272

RESUMO

Enzymatic peptide synthesis has the potential to be a viable alternative for chemical peptide synthesis. Because of the increasing commercial interest in peptides, new and improved enzymatic synthesis methods are desirable. In recently developed enzymatic strategies such as substrate mimetic approaches and enzyme-specific activation, use of the guanidinophenyl ester (OGp) group has been shown to suffer from some drawbacks. OGp esters are sensitive to spontaneous chemical hydrolysis and the group is expensive to synthesize and therefore not suitable for large-scale applications. On the basis of earlier computational studies, we hypothesized that OGp might be replaceable by simpler ester groups to make the enzyme-specific activation approach to peptide bond formation more accessible. To this end, a set of potential activating esters (Z-Gly-Act) was designed, synthesized, and evaluated. Both the benzyl (OBn) and the dimethylaminophenyl (ODmap) esters gave promising results. For these esters, the scope of a model dipeptide synthesis reaction under aqueous conditions was investigated by varying the amino acid donor. The results were compared with those obtained from a previous study of Z-X(AA) -OGp esters. Computational docking analysis of the set of esters was performed in order to provide insight into the differences in the reactivities of all the potential activating esters. Finally, selected ODmap- and OBn-activated amino acids were applied in the synthesis of two biologically active dipeptides on preparative scales.


Assuntos
Dipeptídeos/síntese química , Papaína/metabolismo , Água/química , Biocatálise , Domínio Catalítico , Técnicas de Química Sintética , Dipeptídeos/química , Desenho de Fármacos , Ésteres , Modelos Moleculares , Papaína/química
19.
J Chem Inf Model ; 52(6): 1607-20, 2012 Jun 25.
Artigo em Inglês | MEDLINE | ID: mdl-22646988

RESUMO

The pharmacophore concept is of central importance in computer-aided drug design (CADD) mainly because of its successful application in medicinal chemistry and, in particular, high-throughput virtual screening (HTVS). The simplicity of the pharmacophore definition enables the complexity of molecular interactions between ligand and receptor to be reduced to a handful set of features. With many pharmacophore screening softwares available, it is of the utmost interest to explore the behavior of these tools when applied to different biological systems. In this work, we present a comparative analysis of eight pharmacophore screening algorithms (Catalyst, Unity, LigandScout, Phase, Pharao, MOE, Pharmer, and POT) for their use in typical HTVS campaigns against four different biological targets by using default settings. The results herein presented show how the performance of each pharmacophore screening tool might be specifically related to factors such as the characteristics of the binding pocket, the use of specific pharmacophore features, and the use of these techniques in specific steps/contexts of the drug discovery pipeline. Algorithms with rmsd-based scoring functions are able to predict more compound poses correctly as overlay-based scoring functions. However, the ratio of correctly predicted compound poses versus incorrectly predicted poses is better for overlay-based scoring functions that also ensure better performances in compound library enrichments. While the ensemble of these observations can be used to choose the most appropriate class of algorithm for specific virtual screening projects, we remarked that pharmacophore algorithms are often equally good, and in this respect, we also analyzed how pharmacophore algorithms can be combined together in order to increase the success of hit compound identification. This study provides a valuable benchmark set for further developments in the field of pharmacophore search algorithms, e.g., by using pose predictions and compound library enrichment criteria.


Assuntos
Química Farmacêutica , Desenho de Fármacos , Algoritmos , Desenho Assistido por Computador , Avaliação Pré-Clínica de Medicamentos
20.
ACS Med Chem Lett ; 13(6): 904-910, 2022 Jun 09.
Artigo em Inglês | MEDLINE | ID: mdl-35707144

RESUMO

Human African trypanosomiasis (HAT) is a neglected tropical disease caused by the parasite Trypanosoma brucei (T.b.). A validated target for the treatment of HAT is the parasitic T.b. cyclic nucleotide phosphodiesterase B1 (TbrPDEB1). Although nanomolar TbrPDEB1 inhibitors have been obtained, their activity against the off-target human PDE4 (hPDE4) is likely to lead to undesirable clinical side effects, such as nausea, emesis, and immune suppression. Thus, new and more selective TbrPDEB1 inhibitors are still needed. This retrospective study evaluated the free energy perturbation (FEP+) method to predict the affinity profiles of TbrPDEB1 inhibitors against hPDE4. We demonstrate that FEP+ can be used to accurately predict the activity profiles of these homologous proteins. Moreover, we show how FEP+ can overcome challenges like protein flexibility and high sequence conservation. This also implies that the method can be applied prospectively for the lead optimization campaigns to design new and more selective TbrPDEB1 inhibitors.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA