Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Mais filtros

Base de dados
País/Região como assunto
Tipo de documento
Intervalo de ano de publicação
1.
Biol Lett ; 20(5): 20230448, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38716586

RESUMO

Recent molecular taxonomic advancements have expanded our understanding of crocodylian diversity, revealing the existence of previously overlooked species, including the Congo dwarf crocodile (Osteolaemus osborni) in the central Congo Basin rainforests. This study explores the genomic divergence between O. osborni and its better-known relative, the true dwarf crocodile (Osteolaemus tetraspis), shedding light on their evolutionary history. Field research conducted in the northwestern Republic of the Congo uncovered a locality where both species coexist in sympatry/syntopy. Genomic analysis of sympatric individuals reveals a level of divergence comparable to that between ecologically similar South American dwarf caimans (Paleosuchus palpebrosus and Paleosuchus trigonatus), suggesting parallel speciation in the Afrotropics and Neotropics during the Middle to Late Miocene, 10-12 Ma. Comparison of the sympatric and allopatric dwarf crocodiles indicates no gene flow between the analysed sympatric individuals of O. osborni and O. tetraspis. However, a larger sample will be required to answer the question of whether or to what extent these species hybridize. This study emphasizes the need for further research on the biology and conservation status of the Congo dwarf crocodile, highlighting its significance in the unique biodiversity of the Congolian rainforests and thus its potential as a flagship species.


Assuntos
Jacarés e Crocodilos , Animais , Jacarés e Crocodilos/genética , Jacarés e Crocodilos/anatomia & histologia , Jacarés e Crocodilos/classificação , Congo , Simpatria , América do Sul , Filogenia , Especiação Genética
2.
Mol Ecol ; 31(15): 3979-3998, 2022 08.
Artigo em Inglês | MEDLINE | ID: mdl-34516675

RESUMO

Secondary sympatry amongst sister lineages is strongly associated with genetic and ecological divergence. This pattern suggests that for closely related species to coexist in secondary sympatry, they must accumulate differences in traits that mediate ecological and/or reproductive isolation. Here, we characterized inter- and intraspecific divergence in three giant tree frog species whose distributions stretch across West and Central Africa. Using genome-wide single-nucleotide polymorphism data, we demonstrated that species-level divergence coincides temporally and geographically with a period of large-scale forest fragmentation during the late Pliocene. Our environmental niche models further supported a dynamic history of climatic suitability and stability, and indicated that all three species occupy distinct environmental niches. We found modest morphological differentiation amongst the species with significant divergence in tympanum diameter and male advertisement call. In addition, we confirmed that two species occur in secondary sympatry in Central Africa but found no evidence of hybridization. These patterns support the hypothesis that cycles of genetic exchange and isolation across West and Central Africa have contributed to globally significant biodiversity. Furthermore, divergence in both ecology and reproductive traits appear to have played important roles in maintaining distinct lineages. At the intraspecific level, we found that climatic refugia, precipitation gradients, marine incursions, and potentially riverine barriers generated phylogeographic structure throughout the Pleistocene and into the Holocene. Further studies examining phenotypic divergence and secondary contact amongst these geographically structured populations may demonstrate how smaller scale and more recent biogeographic barriers contribute to regional diversification.


La sympatrie secondaire parmi les espèces sœurs est fortement associée à la divergence génétique et écologique. Ce modèle suggère que pour que des espèces étroitement liées coexistent en sympatrie secondaire, elles doivent accumuler des différences dans les traits qui contribuent à l'isolement écologique ou reproductif. Ici, nous avons caractérisé la divergence inter- et intra-spécifique chez trois espèces de grenouilles arboricoles géantes dont les distributions s'étendent à travers l'Afrique de l'Ouest et Centrale. Avec des données génétiques, nous avons démontré que la divergence au niveau des espèces coïncide temporellement et géographiquement avec une période de fragmentation forestière à la fin du Pliocène. Nos modèles de niches environnementales ont soutenu une histoire dynamique de stabilité climatique, et ont indiqué que les trois espèces occupent des niches environnementales distinctes. Nous avons trouvé une différenciation morphologique modeste parmi les trois espèces mais une divergence significative dans le diamètre du tympan et les cris des mâles. De plus, nous avons confirmé que deux espèces sont présentes en sympatrie secondaire en Afrique Centrale mais n'avons trouvé aucune preuve d'hybridation. Ces résultats soutiennent l'hypothèse que les cycles d'échange génétique et d'isolement à travers l'Afrique de l'Ouest et Centrale ont contribué à une profonde concentration de biodiversité dans la région. De plus, la divergence des traits écologiques et reproducteurs semble avoir joué un rôle important dans le maintien de lignées distinctes. Au niveau intra-spécifique, nous avons constaté que les refuges climatiques, les gradients de précipitation, les incursions marines et potentiellement les barrières fluviales ont généré une structure phylogéographique pendant le Pléistocène et jusqu'à l'Holocène. Des études examinant la divergence phénotypique et le contact secondaire entre ces populations géographiquement structurées pourraient démontrer comment des barrières biogéographiques à échelle plus petite et plus récentes contribuent à la diversification régionale.


Assuntos
Anuros , Biodiversidade , África Central , Animais , Anuros/genética , DNA Mitocondrial/genética , Florestas , Variação Genética , Masculino , Filogenia , Filogeografia , Ranidae/genética
3.
Syst Biol ; 68(6): 859-875, 2019 11 01.
Artigo em Inglês | MEDLINE | ID: mdl-31140573

RESUMO

Theory predicts that sexually dimorphic traits under strong sexual selection, particularly those involved with intersexual signaling, can accelerate speciation and produce bursts of diversification. Sexual dichromatism (sexual dimorphism in color) is widely used as a proxy for sexual selection and is associated with rapid diversification in several animal groups, yet studies using phylogenetic comparative methods to explicitly test for an association between sexual dichromatism and diversification have produced conflicting results. Sexual dichromatism is rare in frogs, but it is both striking and prevalent in African reed frogs, a major component of the diverse frog radiation termed Afrobatrachia. In contrast to most other vertebrates, reed frogs display female-biased dichromatism in which females undergo color transformation, often resulting in more ornate coloration in females than in males. We produce a robust phylogeny of Afrobatrachia to investigate the evolutionary origins of sexual dichromatism in this radiation and examine whether the presence of dichromatism is associated with increased rates of net diversification. We find that sexual dichromatism evolved once within hyperoliids and was followed by numerous independent reversals to monochromatism. We detect significant diversification rate heterogeneity in Afrobatrachia and find that sexually dichromatic lineages have double the average net diversification rate of monochromatic lineages. By conducting trait simulations on our empirical phylogeny, we demonstrate that our inference of trait-dependent diversification is robust. Although sexual dichromatism in hyperoliid frogs is linked to their rapid diversification and supports macroevolutionary predictions of speciation by sexual selection, the function of dichromatism in reed frogs remains unclear. We propose that reed frogs are a compelling system for studying the roles of natural and sexual selection on the evolution of sexual dichromatism across micro- and macroevolutionary timescales.


Assuntos
Anuros/classificação , Filogenia , Pigmentação , África , Animais , Anuros/fisiologia , Evolução Biológica , Feminino , Masculino , Caracteres Sexuais
4.
Mol Phylogenet Evol ; 130: 357-365, 2019 01.
Artigo em Inglês | MEDLINE | ID: mdl-30366085

RESUMO

The African green and bush snakes of the genus Philothamnus currently comprises 21 species and three subspecies and occurs throughout sub-Saharan Africa. The genus has been the subject of previous taxonomic revisions based on traditional morphological characters and limited genetic assessment, and may not reflect their evolutionary history. Indeed, previous findings based on phylogenetics show discordant results of interspecific relationships and question the monophyly of the genus, although taxon sampling has been limited to date. We investigated phylogenetic affinities within Philothamnus with more inclusive genetic and geographical sampling, with the aim of better understanding their evolutionary history, so that future taxonomic revision of Philothamnus can be better informed. Species relationships were examined within a phylogenetic context and sampling included 133 ingroup samples from 16 taxa. Phylogenies were constructed in Bayesian and likelihood frameworks using three mitochondrial (16S, cyt b and ND4) and two nuclear (c-mos and RAG1) markers. Competing hypotheses relating to the monophyly of the genus were tested with a Shimodaira-Hasegawa test. To examine species boundaries, Bayesian General Mixed Yule-Coalescent Model and multi-rate Poisson Tree Processes analyses were conducted. In addition, a barcoding approach was used to further clarify species-level relationships by comparing frequency distributions between intra- and interspecific sequence divergence. The genus was recovered as monophyletic; however, species-delimitation results suggest that the current taxonomy does not reflect the evolutionary history of this group. For example, Philothamnus s. semivariegatus is paraphyletic, with at least four distinct clades. Philothamnus carinatus consists of two cryptic (sister) lineages from Central and West Africa that are deeply divergent, suggesting a long history of isolation between those regions. Furthermore, the subspecies P. n. natalensis and P. n. occidentalis show strong support for species-level divergence, which reflects their morphological and ecological differences. Accordingly, we elevate P. occidentalisnov. comb. to a full species. A fully informed taxonomic revision of these taxa will require additional morphological and ecological data for corroboration, but it seems that the morphological characters (e.g. scalation, dentition) used to describe these species to date are labile within and between species. This most likely has clouded our understanding of the species boundaries within the genus. Our phylogeny and species-delimitation analyses should provide a sounder framework for taxonomy, but may also prove useful toward understanding the morphological adaptations of these species to their respective habitats.


Assuntos
Colubridae/genética , Variação Genética , África Ocidental , Animais , Teorema de Bayes , Geografia , Funções Verossimilhança , Filogenia , Análise de Sequência de DNA , Especificidade da Espécie
5.
Mol Phylogenet Evol ; 120: 274-285, 2018 03.
Artigo em Inglês | MEDLINE | ID: mdl-29246817

RESUMO

Frogs in the genus Amnirana (family Ranidae) are widely distributed across sub-Saharan Africa and present a model system for exploring the relationship between diversification and geography across the continent. Using multiple loci from the mitochondrial (16S) and nuclear genomes (DISP2, FICD, KIAA2013, REV3L), we generated a strongly supported species-level phylogeny that provides insights into the continental biogeography of African species of Amnirana, which form a monophyletic group within the genus. Species delimitation analyses suggest that there may be as many as seven additional species of Amnirana in Africa. The biogeographic history of Amnirana is marked by several dispersal and vicariance events, including dispersal from the Lower Guinean Forest into the Congo Basin. In addition, phylogeographic patterns within two widespread species, A. albolabris and A. galamensis, reveal undescribed cryptic diversity. Populations assigned to A. albolabris in western Africa are more closely related to A. fonensis and require recognition as a distinct species. Our analyses reveal that the Lower and Upper Guinean Forest regions served as important centers of interspecific and intraspecific diversifications for Amnirana.


Assuntos
Anuros/classificação , Biodiversidade , Filogenia , África Subsaariana , Proteínas de Anfíbios/classificação , Proteínas de Anfíbios/genética , Proteínas de Anfíbios/metabolismo , Animais , Anuros/genética , DNA/classificação , DNA/isolamento & purificação , DNA/metabolismo , DNA Mitocondrial/classificação , DNA Mitocondrial/isolamento & purificação , DNA Mitocondrial/metabolismo , Evolução Molecular , Proteínas de Membrana/classificação , Proteínas de Membrana/genética , Proteínas de Membrana/metabolismo , Filogeografia , Análise de Sequência de DNA
6.
Mol Phylogenet Evol ; 127: 288-303, 2018 10.
Artigo em Inglês | MEDLINE | ID: mdl-29551523

RESUMO

Members of the snake subfamily Aparallactinae occur in various habitats throughout sub-Saharan Africa. The monophyly of aparallactine snakes is well established, but relationships within the subfamily are poorly known. We sampled 158 individuals from six of eight aparallactine genera in sub-Saharan Africa. We employed concatenated gene-tree analyses, divergence dating approaches, and ancestral-area reconstructions to infer phylogenies and biogeographic patterns with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). As a result, we uncover several cryptic lineages and elevate a lineage of Polemon to full species status. Diversification occurred predominantly during the Miocene, with a few speciation events occurring subsequently in the Pliocene and Pleistocene. Biogeographic analyses suggested that the Zambezian biogeographic region, comprising grasslands and woodlands, facilitated radiations, vicariance, and dispersal for many aparallactines. Moreover, the geographic distributions of many forest species were fragmented during xeric and cooler conditions, which likely led to diversification events. Biogeographic patterns of aparallactine snakes are consistent with previous studies of other sub-Saharan herpetofauna.


Assuntos
Clima Desértico , Lagartos/anatomia & histologia , Lagartos/classificação , Filogenia , Filogeografia , África Subsaariana , Animais , DNA Mitocondrial/genética , Funções Verossimilhança , Lagartos/genética , Serpentes/anatomia & histologia , Serpentes/genética
7.
Mol Ecol ; 26(19): 5223-5244, 2017 Oct.
Artigo em Inglês | MEDLINE | ID: mdl-28753250

RESUMO

Organismal traits interact with environmental variation to mediate how species respond to shared landscapes. Thus, differences in traits related to dispersal ability or physiological tolerance may result in phylogeographic discordance among co-distributed taxa, even when they are responding to common barriers. We quantified climatic suitability and stability, and phylogeographic divergence within three reed frog species complexes across the Guineo-Congolian forests and Gulf of Guinea archipelago of Central Africa to investigate how they responded to a shared climatic and geological history. Our species-specific estimates of climatic suitability through time are consistent with temporal and spatial heterogeneity in diversification among the species complexes, indicating that differences in ecological breadth may partly explain these idiosyncratic patterns. Likewise, we demonstrated that fluctuating sea levels periodically exposed a land bridge connecting Bioko Island with the mainland Guineo-Congolian forest and that habitats across the exposed land bridge likely enabled dispersal in some species, but not in others. We did not find evidence that rivers are biogeographic barriers across any of the species complexes. Despite marked differences in the geographic extent of stable climates and temporal estimates of divergence among the species complexes, we recovered a shared pattern of intermittent climatic suitability with recent population connectivity and demographic expansion across the Congo Basin. This pattern supports the hypothesis that genetic exchange across the Congo Basin during humid periods, followed by vicariance during arid periods, has shaped regional diversity. Finally, we identified many distinct lineages among our focal taxa, some of which may reflect incipient or unrecognized species.


Assuntos
Anuros/classificação , Evolução Biológica , Mudança Climática , Florestas , Filogenia , África Central , Animais , Núcleo Celular/genética , DNA Mitocondrial/genética , Feminino , Guiné , Ilhas , Masculino , Modelos Biológicos , Fenótipo , Filogeografia
8.
PLoS One ; 14(4): e0214889, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30995262

RESUMO

Atractaspidines are poorly studied, fossorial snakes that are found throughout Africa and western Asia, including the Middle East. We employed concatenated gene-tree analyses and divergence dating approaches to investigate evolutionary relationships and biogeographic patterns of atractaspidines with a multi-locus data set consisting of three mitochondrial (16S, cyt b, and ND4) and two nuclear genes (c-mos and RAG1). We sampled 91 individuals from both atractaspidine genera (Atractaspis and Homoroselaps). Additionally, we used ancestral-state reconstructions to investigate fang and diet evolution within Atractaspidinae and its sister lineage (Aparallactinae). Our results indicated that current classification of atractaspidines underestimates diversity within the group. Diversification occurred predominantly between the Miocene and Pliocene. Ancestral-state reconstructions suggest that snake dentition in these taxa might be highly plastic within relatively short periods of time to facilitate adaptations to dynamic foraging and life-history strategies.


Assuntos
Viperidae/classificação , Viperidae/genética , Estruturas Animais/anatomia & histologia , Estruturas Animais/fisiologia , Animais , Citocromos b/genética , Evolução Molecular , Genes Mitocondriais , Genes RAG-1 , Genes mos , NADH Desidrogenase/genética , Filogenia , Comportamento Predatório , RNA Ribossômico 16S/genética , Fatores de Tempo , Viperidae/fisiologia
9.
Zootaxa ; 4032(1): 55-80, 2015 Oct 14.
Artigo em Inglês | MEDLINE | ID: mdl-26624339

RESUMO

We describe two new species of puddle frogs, genus Phrynobatrachus, from the south-western Republic of the Congo. One of them, P. horsti sp. nov., occurs also in neighbouring Gabon and is morphologically most similar to the Cameroonian P. ruthbeateae. It differs from the latter species by smaller males with longer thighs and shanks. The new species comprises various colour morphs but always has less conspicuous black borders between flanks and belly than P. ruthbeateae. The distinct and large black axillary blotch of P. ruthbeateae is either much smaller in P. horsti sp. nov., or broken into numerous irregularly shaped smaller dots. Similarly, a black transversal line at the anterior ventral border of thighs and the black face mask is less distinct and irregularly delimitated in P. horsti sp. nov. when compared to P. ruthbeateae. The mean genetic difference in the sampled region of the 16S rRNA gene between P. horsti sp. nov. and 40 other western African congeners range from 3.66-18.10%. The second new species, P. mayokoensis sp. nov., differs from all other known congeners by the combination of a compact and warty body, the absence of a spiny eyelid tubercle and pedal webbing, a conspicuous black triangle on throat and anterior part of the belly, and a distinct large red blotch on the anterior-proximal surface of the thighs. It exhibited a mean genetic difference in the 16S rRNA to 40 other western African congeners ranging from 1.34-16.98%. The genetically most similar sequence stems from a GenBank entry of a Gabonese frog, determined as P. ogoensis. A comparison of the new species with P. ogoensis syntypes confirmed their specific distinctiveness, most convincingly underlined by the absence of pedal webbing in the new species and the pronounced pedal webbing in P. ogoensis. The GenBank entry thus most likely is based on a misidentification and P. mayokoensis sp. nov. may also occur in neighbouring Gabon. The discovery of the two new frog species is further evidence of the huge gap in our knowledge concerning the species richness in the Guineo-Congolian rainforests.


Assuntos
Anuros/classificação , Distribuição Animal , Estruturas Animais/anatomia & histologia , Estruturas Animais/crescimento & desenvolvimento , Animais , Anuros/anatomia & histologia , Anuros/crescimento & desenvolvimento , Tamanho Corporal , Congo , Ecossistema , Feminino , Masculino , Tamanho do Órgão
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA