Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Cell Metab ; 2024 May 25.
Artigo em Inglês | MEDLINE | ID: mdl-38834070

RESUMO

Comprehensive whole-body models (WBMs) accounting for organ-specific dynamics have been developed to simulate adult metabolism, but such models do not exist for infants. Here, we present a resource of 360 organ-resolved, sex-specific models of newborn and infant metabolism (infant-WBMs) spanning the first 180 days of life. These infant-WBMs were parameterized to represent the distinct metabolic characteristics of newborns and infants, including nutrition, energy requirements, and thermoregulation. We demonstrate that the predicted infant growth was consistent with the recommendation by the World Health Organization. We assessed the infant-WBMs' reliability and capabilities for personalization by simulating 10,000 newborns based on their blood metabolome and birth weight. Furthermore, the infant-WBMs accurately predicted changes in known biomarkers over time and metabolic responses to treatment strategies for inherited metabolic diseases. The infant-WBM resource holds promise for personalized medicine, as the infant-WBMs could be a first step to digital metabolic twins for newborn and infant metabolism.

2.
Metabolites ; 13(2)2023 Feb 18.
Artigo em Inglês | MEDLINE | ID: mdl-36837923

RESUMO

Isovaleric aciduria (IVA) is a rare disorder of leucine metabolism and part of newborn screening (NBS) programs worldwide. However, NBS for IVA is hampered by, first, the increased birth prevalence due to the identification of individuals with an attenuated disease variant (so-called "mild" IVA) and, second, an increasing number of false positive screening results due to the use of pivmecillinam contained in the medication. Recently, machine learning (ML) methods have been analyzed, analogous to new biomarkers or second-tier methods, in the context of NBS. In this study, we investigated the application of machine learning classification methods to improve IVA classification using an NBS data set containing 2,106,090 newborns screened in Heidelberg, Germany. Therefore, we propose to combine two methods, linear discriminant analysis, and ridge logistic regression as an additional step, a digital-tier, to traditional NBS. Our results show that this reduces the false positive rate by 69.9% from 103 to 31 while maintaining 100% sensitivity in cross-validation. The ML methods were able to classify mild and classic IVA from normal newborns solely based on the NBS data and revealed that besides isovalerylcarnitine (C5), the metabolite concentration of tryptophan (Trp) is important for improved classification. Overall, applying ML methods to improve the specificity of IVA could have a major impact on newborns, as it could reduce the newborns' and families' burden of false positives or over-treatment.

3.
JIMD Rep ; 63(3): 250-261, 2022 May.
Artigo em Inglês | MEDLINE | ID: mdl-35433168

RESUMO

The development and continuous optimization of newborn screening (NBS) programs remains an important and challenging task due to the low prevalence of screened diseases and high sensitivity requirements for screening methods. Recently, different machine learning (ML) methods have been applied to support NBS. However, most studies only focus on single diseases or specific ML techniques making it difficult to draw conclusions on which methods are best to implement. Therefore, we performed a systematic literature review of peer-reviewed publications on ML-based NBS methods. Overall, 125 related papers, published in the past two decades, were collected for the study, and 17 met the inclusion criteria. We analyzed the opportunities and challenges of ML methods for NBS including data preprocessing, classification models and pattern recognition methods based on their underlying approaches, data requirements, interpretability on a modular level, and performance. In general, ML methods have the potential to reduce the false positive rate and identify so far unknown metabolic patterns within NBS data. Our analysis revealed, that, among the presented, logistic regression analysis and support vector machines seem to be valuable candidates for NBS. However, due to the variety of diseases and methods, a general recommendation for a single method in NBS is not possible. Instead, these methods should be further investigated and compared to other approaches in comprehensive studies as they show promising results in NBS applications.

SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA