Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 19 de 19
Filtrar
1.
Int J Mol Sci ; 24(3)2023 Jan 20.
Artigo em Inglês | MEDLINE | ID: mdl-36768427

RESUMO

Breast cancer is the second leading cause of cancer-related death in women in the world, and its management includes a combination of surgery, radiation therapy, chemotherapy, and immunotherapy, whose effectiveness depends largely, but not exclusively, on the molecular subtype (Luminal A, Luminal B, HER2+ and Triple Negative). All breast cancer subtypes are accompanied by peculiar and substantial changes in sphingolipid metabolism. Alterations in sphingolipid metabolite levels, such as ceramides, dihydroceramide, sphingosine, sphingosine-1-phosphate, and sphingomyelin, as well as in their biosynthetic and catabolic enzymatic pathways, have emerged as molecular mechanisms by which breast cancer cells grow, respond to or escape therapeutic interventions and could take on diagnostic and prognostic value. In this review, we summarize the current landscape around two main themes: 1. sphingolipid metabolites, enzymes and transport proteins that have been found dysregulated in human breast cancer cells and/or tissues; 2. sphingolipid-driven mechanisms that allow breast cancer cells to respond to or evade therapies. Having a complete picture of the impact of the sphingolipid metabolism in the development and progression of breast cancer may provide an effective means to improve and personalize treatments and reduce associated drug resistance.


Assuntos
Neoplasias da Mama , Feminino , Humanos , Neoplasias da Mama/tratamento farmacológico , Neoplasias da Mama/metabolismo , Ceramidas/metabolismo , Esfingolipídeos/metabolismo , Esfingomielinas , Metabolismo dos Lipídeos
2.
Int J Mol Sci ; 21(2)2020 Jan 09.
Artigo em Inglês | MEDLINE | ID: mdl-31936443

RESUMO

Wound healing is a very complex process that allows organisms to survive injuries. It is strictly regulated by a number of biochemical and physical factors, mechanical forces included. Studying wound healing in space is interesting for two main reasons: (i) defining tools, procedures, and protocols to manage serious wounds and burns eventually occurring in future long-lasting space exploration missions, without the possibility of timely medical evacuation to Earth; (ii) understanding the role of gravity and mechanical factors in the healing process and scarring, thus contributing to unravelling the mechanisms underlying the switching between perfect regeneration and imperfect repair with scarring. In the study presented here, a new in vivo sutured wound healing model in the leech (Hirudo medicinalis) has been used to evaluate the effect of unloading conditions on the healing process and the effectiveness of platelet rich plasma (PRP) as a countermeasure. The results reveal that microgravity caused a healing delay and structural alterations in the repair tissue, which were prevented by PRP treatment. Moreover, investigating the effects of microgravity and PRP on an in vitro wound healing model, it was found that PRP is able to counteract the microgravity-induced impairment in fibroblast migration to the wound site. This could be one of the mechanisms underlying the effectiveness of PRP in preventing healing impairment in unloading conditions.


Assuntos
Modelos Biológicos , Plasma Rico em Plaquetas/metabolismo , Ausência de Peso , Cicatrização , Animais , Contagem de Células , Movimento Celular/genética , Colágeno/metabolismo , Elasticidade , Regulação da Expressão Gênica , Sanguessugas/fisiologia , Camundongos , Células NIH 3T3 , Fator A de Crescimento do Endotélio Vascular/metabolismo
3.
Int J Mol Sci ; 20(15)2019 Jul 31.
Artigo em Inglês | MEDLINE | ID: mdl-31370282

RESUMO

Ischemic-reperfusion (I/R) injury induced a remodeling of protein and lipid homeostasis, under oxidative stress and inflammatory status. Starvation occurring during I/R is a condition leading to autophagy activation, which allows abnormal material clearance or amino acid, or both, and fatty acid (FA) recycling essential for survival. This study investigated the lipid reshaping, peroxidation, and related-signaling pathways, in rat brain endothelial cells (RBE4) subjected to 3 h of oxygen and glucose deprivation (OGD) and restoration of standard condition (I/R in vitro model). Lipids and proteins were analyzed after 1 or 24 h of oxygen and nutrient restoration. Together with the oxidative stress and inflammatory status, I/R injury induced a reshaping of neutral lipids and biogenesis of lipid droplets (LD) with excessive lipid storage. The increase of LC3-II/LC3-I ratio, an autophagy marker, and LC3 co-localization with LD suggest the activation of lipophagy machinery to counteract the cell engulfment. Lipophagy leads to cholesterol ester (CE) hydrolysis, increasing free cholesterol (FC) secretion, which occurred by specific transporters or unconventional exocytosis pathways, or both. Here, we propose that an unconventional spreading of FC and other lipid metabolites may influence the neurovascular unit (NVU) cells, contributing to Blood brain barrier (BBB) alteration or adaptation, or both, to the cumulative effects of several transient ischemia.


Assuntos
Autofagia/efeitos dos fármacos , Células Endoteliais/metabolismo , Glucose/farmacologia , Metabolismo dos Lipídeos/efeitos dos fármacos , Oxigênio/farmacologia , Animais , Barreira Hematoencefálica/metabolismo , Encéfalo/metabolismo , Encéfalo/patologia , Hipóxia Celular , Linhagem Celular , Colesterol/metabolismo , Ésteres do Colesterol/metabolismo , Células Endoteliais/efeitos dos fármacos , Células Endoteliais/patologia , Expressão Gênica/efeitos dos fármacos , Glucose/deficiência , Gotículas Lipídicas/efeitos dos fármacos , Gotículas Lipídicas/metabolismo , Proteínas Associadas aos Microtúbulos/genética , Proteínas Associadas aos Microtúbulos/metabolismo , Modelos Biológicos , Isoformas de Proteínas/genética , Isoformas de Proteínas/metabolismo , Ratos , Traumatismo por Reperfusão/metabolismo , Traumatismo por Reperfusão/patologia
4.
Malar J ; 17(1): 456, 2018 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-30522493

RESUMO

BACKGROUND: Plasmodium falciparum haemozoin, a detoxification product of digested haemoglobin from infected erythrocytes, is released into the bloodstream upon schizont rupture and accumulates in leukocytes. High levels of haemozoin correlate with disease severity. Some studies have shown that concentrations of the substrate of inducible nitric oxide synthase (iNOS), L-arginine, as well as nitric oxide are low in patients infected with P. falciparum malaria. The present study investigates, in vitro, the role of P. falciparum haemozoin on nitric oxide production, iNOS expression in macrophages, and the possible interaction between L-arginine and haemozoin. METHODS: Plasmodium falciparum haemozoin was obtained from in vitro cultures through magnetic isolation. Phagocytosis of haemozoin by immortalized bone marrow derived macrophages was detected by confocal reflection combined with fluorescence microscopy. Nitrite concentrations in the supernatants was evaluated by Griess assay as a standard indication of nitric oxide production, while iNOS expression was detected on cell extracts by western blotting. Detection of L-arginine in haemozoin-treated or untreated media was achieved by liquid chromatography-tandem mass spectrometry (LC-MS/MS). RESULTS: Haemozoin synergizes in vitro with interferon-gamma to produce nitric oxide. However, when mouse macrophages were stimulated with haemozoin, a proportional increase of nitric oxide was observed up to 25 µM of haemozoin, followed by a decrease with doses up to 100 µM, when nitric oxide release was completely abrogated. This was not due to reactive oxygen species production, nor to an effect on iNOS activity. Interestingly, when at 24 h, haemozoin-treated macrophages were washed and incubated in fresh medium for further 24 h, the nitric oxide production was restored in a dose-response manner. Similar results were seen when L-arginine-enriched media was used in the stimulation. Moreover, muramyldipeptide, a strong nitric oxide inducer, was unable to activate macrophages to release nitric oxide in the presence of haemozoin-treated medium. By LC-MS/MS a complete depletion of L-arginine was observed in this haemozoin-treated, conditioned medium. CONCLUSIONS: It is proposed that haemozoin interacts with L-arginine reducing its availability for iNOS, and thus decreasing nitric oxide production. The clinical (or pathological) implications of these results are discussed.


Assuntos
Arginina/metabolismo , Hemeproteínas/metabolismo , Óxido Nítrico/metabolismo , Plasmodium falciparum/química , Animais , Arginina/química , Linhagem Celular , Células Cultivadas , Hemeproteínas/química , Humanos , Interferon gama/metabolismo , Macrófagos/citologia , Macrófagos/metabolismo , Macrófagos/parasitologia , Malária Falciparum/metabolismo , Malária Falciparum/parasitologia , Camundongos , Óxido Nítrico Sintase Tipo II/metabolismo
5.
Mediators Inflamm ; 2017: 7435621, 2017.
Artigo em Inglês | MEDLINE | ID: mdl-29391667

RESUMO

Cultured primary human keratinocytes are frequently employed for studies of immunological and inflammatory responses; however, interpretation of experimental data may be complicated by donor to donor variability, the relatively short culture lifetime, and variations between passages. To standardize the in vitro studies on keratinocytes, we investigated the use of HaCaT cells, a long-lived, spontaneously immortalized human keratinocyte line which is able to differentiate in vitro, as a suitable model to follow the release of inflammatory and repair mediators in response to TNFα or IL-1ß. Different treatment conditions (presence or absence of serum) and differentiation stimuli (increase in cell density as a function of time in culture and elevation of extracellular calcium) were considered. ELISA and Multiplex measurement technologies were used to monitor the production of cytokines and chemokines. Taken together, the results highlight that Ca2+ concentration in the medium, cell density, and presence of serum influences at different levels the release of proinflammatory mediators by HaCaT cells. Moreover, HaCaT cells maintained in low Ca2+ medium and 80% confluent are similar to normal keratinocytes in terms of cytokine production suggesting that HaCaT cells may be a useful model to investigate anti-inflammatory interventions/therapies on skin diseases.


Assuntos
Mediadores da Inflamação/metabolismo , Queratinócitos/imunologia , Anti-Inflamatórios/farmacologia , Cálcio/metabolismo , Diferenciação Celular , Proliferação de Células , Células Cultivadas , Citocinas/biossíntese , Humanos , Queratinócitos/citologia , Queratinócitos/metabolismo
6.
Cells ; 13(6)2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38534353

RESUMO

Gravity and mechanical forces cause important alterations in the human skeletal system, as demonstrated by space flights. Innovative animal models like zebrafish embryos and medaka have been introduced to study bone response in ground-based microgravity simulators. We used, for the first time, adult zebrafish in simulated microgravity, with a random positioning machine (RPM) to study bone remodeling in the scales. To evaluate the effects of microgravity on bone remodeling in adult bone tissue, we exposed adult zebrafish to microgravity for 14 days using RPM and we evaluated bone remodeling on explanted scales. Our data highlight bone resorption in scales in simulated microgravity fish but also in the fish exposed, in normal gravity, to the vibrations produced by the RPM. The osteoclast activation in both rotating and non-rotating samples suggest that prolonged vibrations exposure leads to bone resorption in the scales tissue. Stress levels in these fish were normal, as demonstrated by blood cortisol quantification. In conclusion, vibrational mechanical stress induced bone resorption in adult fish scales. Moreover, adult fish as an animal model for microgravity studies remains controversial since fish usually live in weightless conditions because of the buoyant force from water and do not constantly need to support their bodies against gravity.


Assuntos
Reabsorção Óssea , Animais , Vibração , Ausência de Peso , Peixe-Zebra
7.
Biochim Biophys Acta ; 1801(6): 617-24, 2010 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-20156584

RESUMO

Gangliosides are well-known regulators of cell differentiation through specific interactions with growth factor receptors. Previously, our group provided the first evidence about stable association of ganglioside GM(3) to EGFR/ErbB2 heterodimers in mammary epithelial cells. Goals of the present study were to better define the role of gangliosides in EGFR/ErbB2 heterodimerization and receptor phosphorylation events and to analyze their involvement in mammary cell differentiation. Experiments have been conducted using the ceramide analogue (+/-)-treo-1-phenyl-2-decanoylamino-3-morpholino-1-propanol hydrochloride ([D]-PDMP), which inhibits ceramide glucosyltransferase resulting in the endogenous ganglioside depletion, and the lactogenic hormone mix DIP (dexamethasone, insulin, prolactin), which induces cell differentiation and beta-casein mRNA synthesis. In addition, treatments of ganglioside-depleted cells with exogenous GM(3) have been carried out to ascertain the specific involvement of this ganglioside. Results from co-immunoprecipitation and Western blot experiments have shown that the endogenous ganglioside depletion resulted in the disappearance of SDS-stable EGFR/ErbB2 heterodimers and in the appearance of tyrosine-phosphorylated EGFR also in the absence of EGF stimulation; exogenous GM(3) added in combination with [D]-PDMP reversed both these effects. In contrast, the tyrosine phosphorylation of ErbB2 in ganglioside-depleted cells occurred only after EGF stimulation. Moreover, when ganglioside-depleted cells were treated with DIP in absence of EGF, beta-casein gene expression appeared strongly down-regulated, and beta-casein mRNA levels were partially restored by exogenous GM(3) treatment. Altogether, although the involvement of other ganglioside species cannot be excluded, these findings sustain the ganglioside GM(3) as an essential molecule for EGFR/ErbB2 heterodimer stability and important regulator of EGFR tyrosine phosphorylation, but it is not crucial for tyrosine phosphorylation of the heterodimerization partner ErbB2. Moreover, modulation of EGFR phosphorylation may explain how gangliosides contribute to regulate the lactogenic hormone-induced mammary cell differentiation.


Assuntos
Fator de Crescimento Epidérmico/metabolismo , Receptores ErbB/metabolismo , Gangliosídeos/farmacologia , Receptor ErbB-2/metabolismo , Sequência de Bases , Divisão Celular , Linhagem Celular , Primers do DNA , Dimerização , Humanos , Fosforilação
8.
Lipids Health Dis ; 10: 73, 2011 May 12.
Artigo em Inglês | MEDLINE | ID: mdl-21569413

RESUMO

BACKGROUND: PUFAs are important molecules for membrane order and function; they can modify inflammation-inducible cytokines production, eicosanoid production, plasma triacylglycerol synthesis and gene expression. Recent studies suggest that n-3 PUFAs can be cancer chemopreventive, chemosuppressive and auxiliary agents for cancer therapy. N-3 PUFAs could alter cancer growth influencing cell replication, cell cycle, and cell death. The question that remains to be answered is how n-3 PUFAs can affect so many physiological processes. We hypothesize that n-3 PUFAs alter membrane stability, modifying cellular signalling in breast cancer cells. METHODS: Two lines of human breast cancer cells characterized by different expression of ER and EGFR receptors were treated with AA, EPA or DHA. We have used the MTT viability test and expression of apoptotic markers to evaluate the effect of PUFAs on cancer growth. Phospholipids were analysed by HPLC/GC, to assess n-3 incorporation into the cell membrane. RESULTS: We have observed that EPA and DHA induce cell apoptosis, a reduction of cell viability and the expression of Bcl2 and procaspase-8. Moreover, DHA slightly reduces the concentration of EGFR but EPA has no effect. Both EPA and DHA reduce the activation of EGFR.N-3 fatty acids are partially metabolized in both cell lines; AA is integrated without being further metabolized. We have analysed the fatty acid pattern in membrane phospholipids where they are incorporated with different degrees of specificity. N-3 PUFAs influence the n-6 content and vice versa. CONCLUSIONS: Our results indicate that n-3 PUFA feeding might induce modifications of breast cancer membrane structure that increases the degree of fatty acid unsaturation. This paper underlines the importance of nutritional factors on health maintenance and on disease prevention.


Assuntos
Neoplasias da Mama/patologia , Membrana Celular/efeitos dos fármacos , Membrana Celular/metabolismo , Ácidos Graxos Ômega-3/farmacologia , Apoptose/efeitos dos fármacos , Neoplasias da Mama/enzimologia , Caspase 8/metabolismo , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Ácidos Docosa-Hexaenoicos/farmacologia , Ácido Eicosapentaenoico/farmacologia , Fator de Crescimento Epidérmico/farmacologia , Receptores ErbB/metabolismo , Feminino , Humanos , Fosfolipídeos/metabolismo , Fosforilação/efeitos dos fármacos , Proteínas Proto-Oncogênicas c-bcl-2/metabolismo
9.
Cells ; 10(1)2021 01 16.
Artigo em Inglês | MEDLINE | ID: mdl-33467111

RESUMO

(1) Background: Lipid metabolism is a fundamental hallmark of all tumors, especially of breast cancer. Few studies describe the different lipid metabolisms and sensitivities to the microenvironment of breast cancer cell subtypes that influence the proliferation, aggressiveness, and success of therapy. This study describes the impact of lipid microenvironment on endoplasmic reticulum (ER) membrane and metabolic activity in two breast cancer cell lines with Luminal A and triple-negative breast cancer (TNBC) features. (2) Methods: We investigated the peculiar lipid phenotype of a TNBC cell line, MDA-MB-231, and a Luminal A cell line, MCF7, and their different sensitivity to exogenous fatty acids (i.e., palmitic acid (PA) and docosahexaenoic acid (DHA)). Moreover, we verified the impact of exogenous fatty acids on ER lipid composition. (3) Results: The data obtained demonstrate that MDA-MB-231 cells are more sensitive to the lipid microenvironment and that both PA and DHA are able to remodel their ER membranes with consequences on resident enzyme activity. On the contrary, MCF7 cells are less sensitive to PA, whereas they incorporate DHA, although less efficiently than MDA-MB-231 cells. (4) Conclusions: This study sustains the importance of lipid metabolism as an innovative hallmark to discriminate breast cancer subclasses and to develop personalized and innovative pharmacological strategies. The different sensitivities to the lipid environment shown by MCF7 and MDA-MB-231 cells might be related to cell malignancy and chemoresistance onset. In the future, this new approach could lead to a substantial decrease both in deleterious side effects for the patients and in the cost of entire therapeutic treatments coupled with increased therapy efficiency.


Assuntos
Neoplasias da Mama/metabolismo , Retículo Endoplasmático/metabolismo , Ácidos Graxos , Membranas Intracelulares/metabolismo , Neoplasias da Mama/patologia , Retículo Endoplasmático/patologia , Ácidos Graxos/metabolismo , Ácidos Graxos/farmacologia , Feminino , Humanos , Membranas Intracelulares/patologia , Células MCF-7
10.
Adv Exp Med Biol ; 698: 52-67, 2010.
Artigo em Inglês | MEDLINE | ID: mdl-21520703

RESUMO

All living organisms are constantly exposed to oxidant agents deriving from both endogenous and exogenous sources capable to modify biomolecules and induce damages. Free radicals generated by oxidative stress exert an important role in the development of tissue damage and aging. Reactive species (RS) derived from oxygen (ROS) and nitrogen (RNS) pertain to free radicals family and are constituted by various forms of activated oxygen or nitrogen. RS are continuosly produced during normal physiological events but can be removed by antioxidant defence mechanism: the imbalance between RS and antioxidant defence mechanism leads to modifications in cellular membrane or intracellular molecules. In this chapter only endogenous antioxidant molecules will be critically discussed, such as Glutathione, Alpha-lipoic acid, Coenzyme Q, Ferritin, Uric acid, Bilirubin, Metallothioneine, L-carnitine and Melatonin.


Assuntos
Antioxidantes/metabolismo , Sequestradores de Radicais Livres/metabolismo , Membrana Celular/química , Membrana Celular/metabolismo , Humanos , Estresse Oxidativo/fisiologia , Espécies Reativas de Nitrogênio/metabolismo , Espécies Reativas de Oxigênio/metabolismo
11.
Antioxidants (Basel) ; 9(3)2020 Mar 19.
Artigo em Inglês | MEDLINE | ID: mdl-32204441

RESUMO

In recent years, there has been a growing interest in natural antioxidants as replacements of synthetic compounds because of increased safety concerns and worldwide trend toward the usage of natural additives in foods. One of the richest sources of natural antioxidants, nowadays largely studied for their potential to decrease the risk of diseases and to improve oxidative stability of food products, are edible brown seaweeds. Nevertheless, their antioxidant mechanisms are slightly evaluated and discussed. The aims of this study were to suggest possible mechanism(s) of Fucus vesiculosus antioxidant action and to assess its bioactivity during the production of enriched rye snacks. Chemical and cell-based assays indicate that the efficient preventive antioxidant action of Fucus vesiculosus extracts is likely due to not only the high polyphenol content, but also their good Fe2+-chelating ability. Moreover, the data collected during the production of Fucus vesiculosus-enriched rye snacks show that this seaweed can increase, in appreciable measure, the antioxidant potential of enriched convenience cereals. This information can be used to design functional foods enriched in natural antioxidant ingredients in order to improve the health of targeted consumers.

12.
Cell Biol Int ; 33(8): 893-8, 2009 Aug.
Artigo em Inglês | MEDLINE | ID: mdl-19426823

RESUMO

Space flights cause a number of patho-physiological changes. Oxidative damage has been demonstrated in astronauts after space flights. Oxidative stress is due to an imbalance between production of oxidant and antioxidative defence. In embryos of Xenopus laevis, the glutathione system is an inducible antioxidant defence. For this reason, we investigated the effect of gravity deprivation on endogenous antioxidant enzymes in X. laevis embryos developed for 6 days in a Random Positioning Machine. The results show that glutathione content and the activity of antioxidant enzymes increase in RPM embryos, suggesting the presence of a protective mechanism. An induction of antioxidant defence might play an important role for animals to adapt to micro-gravitational stress, possibly during actual space flights.


Assuntos
Embrião não Mamífero/metabolismo , Glutationa/metabolismo , Oxirredutases/metabolismo , Animais , Embrião não Mamífero/enzimologia , Estresse Oxidativo , Simulação de Ausência de Peso , Xenopus laevis
13.
Biochim Biophys Acta ; 1771(7): 873-8, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17521961

RESUMO

Gangliosides are known to modulate the activation of receptor tyrosine-kinases (RTKs). Recently, we demonstrated the functional relationship between ErbB2 and ganglioside GM(3) in HC11 epithelial cell line. In the present study we investigated, in the same cells, the ErbB2 activation state and its tendency to form stable molecular complexes with the epidermal growth factor receptor (EGFR) and with ganglioside GM(3) upon EGF stimulation. Results from co-immunoprecipitation experiments and western blot analyses indicate that tyrosine-phosphorylated ErbB2 and EGFR monomers and stable ErbB2/EGFR high molecular complexes (heterodimers) are formed following EGF stimulation, even if the receptors co-immunoprecipitates also in the absence of the ligand; these data suggest the existence of pre-dimerization inactive receptor clusters on the cell surface. High performance-thin layer chromatography (HP-TLC) and TLC-immunostaining analyses of the ganglioside fractions extracted from the immunoprecipitates demonstrate that GM(3), but not other gangliosides, is tightly associated to the tyrosine-phosphorylated receptors. Furthermore, we show that GM(3) is preferentially and in a SDS-resistant manner associated to the activated ErbB2/EGFR complexes and EGFR monomer, but not to ErbB2. Altogether our data support the hypothesis that the modulating effects produced by GM(3) on ErbB2 activation are mediated by EGFR.


Assuntos
Receptores ErbB/metabolismo , Gangliosídeo G(M3)/metabolismo , Fosfotirosina/metabolismo , Receptor ErbB-2/metabolismo , Animais , Western Blotting , Dimerização , Fator de Crescimento Epidérmico/farmacologia , Imunoprecipitação , Camundongos
14.
Biochim Biophys Acta ; 1759(7): 348-58, 2006 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-16934889

RESUMO

All human GM3 synthase mRNA variants until now identified predict a protein of 362 amino acids having substrate activity highly restricted to lactosylceramide. In this report we describe the identification of a new GM3 synthase transcript containing an additional translation start codon, located upstream and in-frame with that up to now considered unique translation initiation site in the human GM3 synthase gene. In vitro expression studies showed that the new transcript produces a longer form of human GM3 synthase, that is efficiently translocated into the microsomal lumen and glycosylated. Moreover, stable cDNA transfection into mammalian cells gives rise to a threefold increase of GM3 synthase activity, associated to a broader substrate specificity. Although this transcript has been initially identified in the human placenta, RT-PCR analyses verified the expression of an identical mRNA also in undifferentiated HL60 cells, but not in the monocytic lineage. Altogether, these results are the first demonstration of the existence of a new isoform of human GM3 synthase, which could play an important role during HL60 cell differentiation. The functional relevance of the existence of two isoforms of GM3 synthase is also discussed.


Assuntos
Sialiltransferases/genética , Sialiltransferases/metabolismo , Sequência de Aminoácidos , Sequência de Bases , Diferenciação Celular/genética , Códon de Iniciação , DNA Complementar/genética , Células HL-60 , Humanos , Isoenzimas/genética , Isoenzimas/metabolismo , Dados de Sequência Molecular , Placenta/enzimologia , RNA Mensageiro/metabolismo , Especificidade por Substrato
15.
PLoS One ; 7(3): e32361, 2012.
Artigo em Inglês | MEDLINE | ID: mdl-22412864

RESUMO

Erythrocyte and hemoglobin losses have been frequently observed in humans during space missions; these observations have been designated as "space anemia". Erythrocytes exposed to microgravity have a modified rheology and undergo hemolysis to a greater extent. Cell membrane composition plays an important role in determining erythrocyte resistance to mechanical stress and it is well known that membrane composition might be influenced by external events, such as hypothermia, hypoxia or gravitational strength variations. Moreover, an altered cell membrane composition, in particular in fatty acids, can cause a greater sensitivity to peroxidative stress, with increase in membrane fragility. Solar radiation or low wavelength electromagnetic radiations (such as gamma rays) from the Earth or the space environment can split water to generate the hydroxyl radical, very reactive at the site of its formation, which can initiate chain reactions leading to lipid peroxidation. These reactive free radicals can react with the non-radical molecules, leading to oxidative damage of lipids, proteins and DNA, etiologically associated with various diseases and morbidities such as cancer, cell degeneration, and inflammation. Indeed, radiation constitutes on of the most important hazard for humans during long-term space flights. With this background, we participated to the MDS tissue-sharing program performing analyses on mice erythrocytes flown on the ISS from August to November 2009. Our results indicate that space flight induced modifications in cell membrane composition and increase of lipid peroxidation products, in mouse erythrocytes. Moreover, antioxidant defenses in the flight erythrocytes were induced, with a significant increase of glutathione content as compared to both vivarium and ground control erythrocytes. Nonetheless, this induction was not sufficient to prevent damages caused by oxidative stress. Future experiments should provide information helpful to reduce the effects of oxidative stress exposure and space anemia, possibly by integrating appropriate dietary elements and natural compounds that could act as antioxidants.


Assuntos
Eritrócitos/metabolismo , Estresse Oxidativo , Ausência de Peso/efeitos adversos , Animais , Antioxidantes/metabolismo , Antioxidantes/farmacologia , Índices de Eritrócitos , Membrana Eritrocítica/metabolismo , Eritrócitos/efeitos dos fármacos , Humanos , Camundongos , Camundongos Endogâmicos C57BL , Camundongos Transgênicos , Oxirredução/efeitos dos fármacos , Fatores de Tempo
16.
FEBS Lett ; 584(8): 1476-80, 2010 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-20219466

RESUMO

Previously, we identified a human ST3Gal-V mRNA variant peculiarly characterized by the presence of a translational start codon localized up-stream and in-frame with the one that is usually considered as unique translation initiation site in the human gene. In this study we demonstrate, by cDNA transfection experiments, mutational analyses, enzyme activity assays, and endoglycosidase-H treatments, that the in vivo expression of this transcript gives rise to two human ST3Gal-V isoforms with distinct characteristics. Produced by a leaky scanning mechanism, they carry different N-glycan structures and exhibit differences in their GM(3) synthase activity that might be relevant for the modulation of GM(3) cellular content.


Assuntos
Variação Genética , Nitrogênio/metabolismo , Placenta/metabolismo , Sialiltransferases/biossíntese , Sialiltransferases/química , Western Blotting , Endonucleases/metabolismo , Feminino , Gangliosídeo G(M3)/metabolismo , Glicosilação , Humanos , Isoenzimas/biossíntese , Isoenzimas/química , Isoenzimas/metabolismo , Polissacarídeos/química , Polissacarídeos/metabolismo , Gravidez , RNA Mensageiro/genética , Sialiltransferases/metabolismo , Especificidade por Substrato
17.
J Agric Food Chem ; 58(21): 11428-34, 2010 Nov 10.
Artigo em Inglês | MEDLINE | ID: mdl-20949967

RESUMO

Oxidative stress is strictly correlated to the pathogenesis of many diseases, and a diet rich in fruits and vegetables, or adequately integrated, is currently considered to be a protective and preventive factor. This study aimed to analyze the efficacy of a 1 h preincubation with the highest nontoxic dose of a characterized Mentha longifolia extract (80 µg/mL) in protecting human keratinocytes (NCTC2544) from chemically induced oxidative stress (500 µM H2O2 for 2, 16, and 24 h). As reference synthetic pure compounds rosmarinic acid (360.31 µg/mL), a major mint phenolic constituent, and resveratrol (31.95 mg/mL), a well-known antioxidant, were used. Cellular viability was significantly protected by mint, which limited protein and DNA damage, decreased lipid peroxidation, and preserved glutathione and superoxide dismutase activity in the shorter phases of oxidative stress induction, in extents comparable to or better than those of pure compounds. These data suggest that mint use as only a flavoring has to be revised, taking into consideration its enrichment in foodstuff and cosmetics.


Assuntos
Queratinócitos/efeitos dos fármacos , Mentha/química , Extratos Vegetais/farmacologia , Substâncias Protetoras/farmacologia , Sobrevivência Celular/efeitos dos fármacos , Dano ao DNA/efeitos dos fármacos , Humanos , Queratinócitos/metabolismo , Peroxidação de Lipídeos/efeitos dos fármacos , Estresse Oxidativo/efeitos dos fármacos
18.
Mol Nutr Food Res ; 52(12): 1448-56, 2008 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-18727006

RESUMO

Although several studies have aimed to identify mare's milk proteins, only the major whey proteins and some caseins have yet been characterized. Incomplete sequencing of the equine genome and the difficulty of recovering highly hydrophobic proteins mean that little is known to date about the proteins associated with milk fat globules, which have been shown to play an important role in newborns' defense mechanisms. The fat fraction, in particular the distribution of unsaturated fatty acids, has been more extensively studied, but complex lipids are only partially elucidated. This study reports a 2-DE approach combined with a powerful method for de novo protein sequencing, and quali-quantitative data on complex lipid composition determined by high performance TLC (HPTLC) and GC. The presence in mare's milk of long-chain highly unsaturated fatty acids, and the evidence of close similarity between equine and human milk fat globule membrane proteins, support the use of mare's milk for human nutrition.


Assuntos
Glicolipídeos/análise , Glicoproteínas/análise , Lipídeos/análise , Proteínas do Leite/análise , Sequência de Aminoácidos , Animais , Colostro/química , Ácidos Graxos/análise , Feminino , Cavalos , Gotículas Lipídicas , Proteínas do Leite/química , Dados de Sequência Molecular , Ácido N-Acetilneuramínico/análise
19.
Cell Biol Int ; 31(7): 716-23, 2007 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-17336552

RESUMO

To test the effects of low levels of radiation from space on living organisms, we flew Xenopus laevis embryos at different stages of development on a stratospheric balloon (BI.R.BA mission). After recovery, different parameters were analyzed to assess the effects of flight, with particular regard to oxidative stress damage. Because of failed temperature control during flight, the flight shielded embryos (FC) could not be used for biochemical or morphological comparisons. In contrast, the incubation conditions (i.e. temperature, containers, volumes) for the flight embryos (F) were parallel to those for the ground controls. Mortality data show that younger embryos (16 h) flown on the balloon (F) are more sensitive to radiation exposure than older ones (40 h and 6 days). Exposure during flight lowered the antioxidant potential in all embryos, particularly older ones. These preliminary data demonstrate that flight on a stratospheric balloon might affect antioxidant metabolism, though it is not yet possible to correlate these results with low radiation exposure during flight.


Assuntos
Antioxidantes/metabolismo , Voo Espacial , Ausência de Peso , Xenopus laevis/embriologia , Xenopus laevis/metabolismo , Animais , Catalase/análise , Chaperonina 60/análise , Radiação Cósmica/efeitos adversos , Embrião não Mamífero/anormalidades , Embrião não Mamífero/efeitos da radiação , Glutationa/análise , Glutationa Peroxidase/análise , Glutationa Redutase/análise , Proteínas de Choque Térmico HSP70/análise , Peróxido de Hidrogênio/análise , Fosfatidilcolinas/análise , Fosfatidiletanolaminas/análise , Superóxido Dismutase/análise , Substâncias Reativas com Ácido Tiobarbitúrico/análise , Ausência de Peso/efeitos adversos , Xenopus laevis/anormalidades
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA