Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros

Base de dados
Ano de publicação
Tipo de documento
Intervalo de ano de publicação
1.
J Nucl Cardiol ; 28(1): 50-54, 2021 02.
Artigo em Inglês | MEDLINE | ID: mdl-32909238

RESUMO

In contrast to cardiac sympathetic activity which can be assessed with established PET tracers, there are currently no suitable radioligands to measure cardiac parasympathetic (cholinergic) activity. A radioligand able to measure cardiac cholinergic activity would be an invaluable clinical and research tool since cholinergic dysfunction has been associated with a wide array of pathologies (e.g., chronic heart failure, myocardial infarction, arrythmias). [18F]Fluoroethoxybenzovesamicol (FEOBV) is a cholinergic radiotracer that has been extensively validated in the brain. Whether FEOBV PET can be used to assess cholinergic activity in the heart is not known. Hence, this study aimed to evaluate the properties of FEOBV for cardiac PET imaging and cholinergic activity mapping. PET data were collected for 40 minutes after injection of 230 ± 50 MBq of FEOBV in four healthy participants (1 female; Age: 37 ± 10; BMI: 25 ± 2). Dynamic LV time activity curves were fitted with Logan graphical, 1-tissue compartment, and 2-tissue compartment models, yielding similar distribution volume estimates for each participant. Our initial data show that FEOBV PET has favorable tracer kinetics for quantification of cholinergic activity and is a promising new method for assessing parasympathetic function in the heart.


Assuntos
Coração/diagnóstico por imagem , Miocárdio/metabolismo , Piperidinas/farmacocinética , Tomografia por Emissão de Pósitrons , Proteínas Vesiculares de Transporte de Acetilcolina/metabolismo , Adulto , Feminino , Humanos , Masculino , Pessoa de Meia-Idade , Valores de Referência
2.
Neuroimage ; 219: 117023, 2020 10 01.
Artigo em Inglês | MEDLINE | ID: mdl-32512125

RESUMO

Electromagnetic noninvasive brain stimulation (NIBS) techniques, such as transcranial magnetic stimulation and transcranial electrical stimulation, are widely used in research and represent emerging clinical treatment options for many brain disorders. The brain-wide neurobiological effects of electromagnetic NIBS, however, are not yet fully characterized. The combination of NIBS with molecular brain imaging is a powerful tool for the investigation of these effects. Here, we conducted a systematic review of all published studies investigating the effects of all forms of electromagnetic NIBS using molecular imaging (positron emission tomography, single photon emission computed tomography). A meta-analysis was also conducted when sufficient studies employed similar methodologies. A total of 239 articles were identified, of which 71 were included in the review. Information was extracted about the study design, NIBS parameters, imaging parameters, and observed local and remote effects caused by the stimulation. Regional cerebral blood flow and glucose metabolism were the most common outcome measures, followed by dopamine neurotransmission. While the vast majority of studies obtained remote effects of stimulation in interconnected regions, approximately half of the studies showed local effects at the stimulation site. Our meta-analysis on motor cortex stimulation also showed consistent remote effects. The literature review demonstrates that although the local effects of NIBS as captured by molecular imaging are sometimes modest, there are robust remote changes in brain activity and neurotransmitter function. Finally, we discuss the potential pitfalls and methodological issues and identify gaps in the current knowledge that could be addressed using these techniques.


Assuntos
Encéfalo/diagnóstico por imagem , Tomografia por Emissão de Pósitrons , Tomografia Computadorizada de Emissão de Fóton Único , Estimulação Transcraniana por Corrente Contínua , Estimulação Magnética Transcraniana , Encéfalo/fisiologia , Humanos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA