Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 43
Filtrar
1.
Magn Reson Med ; 91(3): 1099-1114, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-37997011

RESUMO

PURPOSE: To evaluate the influence of skeletal maturation on sodium (23 Na) MRI relaxation parameters and the accuracy of tissue sodium concentration (TSC) quantification in human knee cartilage. METHODS: Twelve pediatric knee specimens were imaged with whole-body 10.5 T MRI using a density-adapted 3D radial projection sequence to evaluate 23 Na parameters: B1 + , T1 , biexponential T 2 * $$ {\mathrm{T}}_2^{\ast } $$ , and TSC. Water, collagen, and sulfated glycosaminoglycan (sGAG) content were calculated from osteochondral biopsies. The TSC was corrected for B1 + , relaxation, and water content. The literature-based TSC (TSCLB ) used previously published values for corrections, whereas the specimen-specific TSC (TSCSP ) used measurements from individual specimens. 23 Na parameters were evaluated in eight cartilage compartments segmented on proton images. Associations between 23 Na parameters, TSCLB - TSCSP difference, biochemical content, and age were determined. RESULTS: From birth to 12 years, cartilage water content decreased by 18%; collagen increased by 59%; and sGAG decreased by 36% (all R2 ≥ 0.557). The short T 2 * $$ {\mathrm{T}}_2^{\ast } $$ ( T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ) decreased by 72%, and the signal fraction relaxing with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ ( fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ ) increased by 55% during the first 5 years but remained relatively stable after that. TSCSP was significantly correlated with sGAG content from biopsies (R2 = 0.739). Depending on age, TSCLB showed higher or lower values than TSCSP . The TSCLB - TSCSP difference was significantly correlated with T 2 * S $$ {{\mathrm{T}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.850), fT 2 * S $$ {{\mathrm{fT}}_2^{\ast}}_{\mathrm{S}} $$ (R2 = 0.651), and water content (R2 = 0.738). CONCLUSION: TSC and relaxation parameters measured with 23 Na MRI provide noninvasive information about changes in sGAG content and collagen matrix during cartilage maturation. Cartilage TSC quantification assuming fixed relaxation may be feasible in children older than 5 years.


Assuntos
Cartilagem Articular , Cartilagem , Humanos , Criança , Pré-Escolar , Imageamento por Ressonância Magnética/métodos , Sódio , Colágeno , Água , Cartilagem Articular/diagnóstico por imagem
2.
Magn Reson Med ; 88(4): 1702-1719, 2022 10.
Artigo em Inglês | MEDLINE | ID: mdl-35692053

RESUMO

PURPOSE: To develop and evaluate a novel RF shimming optimization strategy tailored to improve the transmit efficiency in turbo spin echo imaging when performing time-interleaved acquisition of modes (TIAMO) at ultrahigh fields. THEORY AND METHODS: A nonlocalized efficiency shimming cost function is proposed and extended to perform TIAMO using acquisition modes optimized for refocused echoes (AMORE). The nonlocalized efficiency shimming was demonstrated in brain and knee imaging at 7 Tesla. Phantom and in vivo torso imaging studies were performed to compare the performance between AMORE and previously proposed TIAMO mode optimizations with and without localized constraints in turbo spin echo and gradient echo acquisitions. RESULTS: The proposed nonlocalized efficiency RF shimming produced a circularly polarized-like field with fewer signal dropouts in the brain and knee. For larger targets, AMORE was used and required a significantly lower transmitter voltage to produce a similar contrast to existing TIAMO mode design approaches for turbo spin echo as well as gradient echo acquisitions. In vivo, AMORE effectively reduced signal dropout in the interior torso while providing more uniform contrast with reduced transmit power. A local constraint further improved performance for a target region while maintaining performance in the larger FOV. CONCLUSION: AMORE based on the presented nonlocalized efficiency shimming cost function demonstrated improved contrast and SNR uniformity as well as increased transmit efficiency for both gradient echo and turbo spin echo acquisitions.


Assuntos
Interpretação de Imagem Assistida por Computador , Imageamento por Ressonância Magnética , Algoritmos , Aumento da Imagem/métodos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Imagens de Fantasmas
3.
ScientificWorldJournal ; 2021: 9978819, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-34456636

RESUMO

OBJECTIVE: Ultrasonography (US) has a promising role in evaluating the knee joint, but capability to visualize the femoral articular cartilage needs systematic evaluation. We measured the extent of this acoustic window by comparing standardized US images with the corresponding MRI views of the femoral cartilage. DESIGN: Ten healthy volunteers without knee pathology underwent systematic US and MRI evaluation of both knees. The femoral cartilage was assessed on the oblique transverse axial plane with US and with 3D MRI. The acoustic window on US was compared to the corresponding views of the femoral sulcus and both condyles on MRI. The mean imaging coverage of the femoral cartilage and the cartilage thickness measurements on US and MRI were compared. RESULTS: Mean imaging coverage of the cartilage of the medial femoral condyle was 66% (range 54%-80%) and on the lateral femoral condyle 37% (range 25%-51%) compared with MRI. Mean cartilage thickness measurement in the femoral sulcus was 3.17 mm with US and 3.61 mm with MRI (14.0% difference). The corresponding measurements in the medial femoral condyle were 1.95 mm with US and 2.35 mm with MRI (21.0% difference), and in the lateral femoral condyle, they were 2.17 mm and 2.73 mm (25.6% difference), respectively. CONCLUSION: Two-thirds of the articular cartilage of the medial femoral condyle, and one-third in the lateral femoral condyle, can be assessed with US. The cartilage thickness measurements seem to be underestimated by US. These results show promise for the evaluation of the weight-bearing cartilage of the medial femoral condyle with US.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Fêmur/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Adulto , Cartilagem Articular/anatomia & histologia , Feminino , Fêmur/anatomia & histologia , Voluntários Saudáveis , Humanos , Articulação do Joelho/anatomia & histologia , Imageamento por Ressonância Magnética , Masculino , Ultrassonografia
4.
Radiology ; 280(1): 39-48, 2016 07.
Artigo em Inglês | MEDLINE | ID: mdl-27007803

RESUMO

Purpose To investigate the clinical feasibility of a quantitative sodium 23 ((23)Na) magnetic resonance (MR) imaging protocol developed for breast tumor assessment and to compare it with 7-T diffusion-weighted imaging (DWI). Materials and Methods Written informed consent in this institutional review board-approved study was obtained from eight healthy volunteers and 17 patients with 20 breast tumors (five benign, 15 malignant). To achieve the best image quality and reproducibility, the (23)Na sequence was optimized and tested on phantoms and healthy volunteers. For in vivo quantification of absolute tissue sodium concentration (TSC), an external phantom was used. Static magnetic field, or B0, and combined transmit and receive radiofrequency field, or B1, maps were acquired, and image quality, measurement reproducibility, and accuracy testing were performed. Bilateral (23)Na and DWI sequences were performed before contrast material-enhanced MR imaging in patients with breast tumors. TSC and apparent diffusion coefficient (ADC) were calculated and correlated for healthy glandular tissue and benign and malignant lesions. Results The (23)Na MR imaging protocol is feasible, with 1.5-mm in-plane resolution and 16-minute imaging time. Good image quality was achieved, with high reproducibility (mean TSC values ± standard deviation for the test, 36 mmol per kilogram of wet weight ± 2 [range, 34-37 mmol/kg]; for the retest, 37 mmol/kg ± 1 [range, 35-39 mmol/kg]; P = .610) and accuracy (r = 0.998, P < .001). TSC values in normal glandular and adipose breast tissue were 35 mmol/kg ± 3 and 18 mmol/kg ± 3, respectively. In malignant lesions (mean size, 31 mm ± 24; range, 6-92 mm), the TSC of 69 mmol/kg ± 10 was, on average, 49% higher than that in benign lesions (mean size, 14 mm ± 12; range, 6-35 mm), with a TSC of 47 mmol/kg ± 8 (P = .002). There were similar ADC differences between benign ([1.78 ± 0.23] × 10(-3) mm(2)/sec) and malignant ([1.03 ± 0.23] × 10(-3) mm(2)/sec) tumors (P = .002). ADC and TSC were inversely correlated (r = -0.881, P < .001). Conclusion Quantitative (23)Na MR imaging is clinically feasible, may provide good differentiation between malignant and benign breast lesions, and demonstrates an inverse correlation with ADC. (©) RSNA, 2016 Online supplemental material is available for this article.


Assuntos
Neoplasias da Mama/diagnóstico por imagem , Interpretação de Imagem Assistida por Computador/métodos , Imageamento por Ressonância Magnética/métodos , Radioisótopos de Sódio , Adulto , Idoso , Mama/diagnóstico por imagem , Imagem de Difusão por Ressonância Magnética/métodos , Estudos de Viabilidade , Feminino , Humanos , Pessoa de Meia-Idade , Imagens de Fantasmas , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
5.
NMR Biomed ; 29(2): 206-15, 2016 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-25810325

RESUMO

The growing need for early diagnosis and higher specificity than that which can be achieved with morphological MRI is a driving force in the application of methods capable of probing the biochemical composition of cartilage tissue, such as sodium imaging. Unlike morphological imaging, sodium MRI is sensitive to even small changes in cartilage glycosaminoglycan content, which plays a key role in cartilage homeostasis. Recent advances in high- and ultrahigh-field MR systems, gradient technology, phase-array radiofrequency coils, parallel imaging approaches, MRI acquisition strategies and post-processing developments have resulted in many clinical in vivo sodium MRI studies of cartilage, even at 3 T. Sodium MRI has great promise as a non-invasive tool for cartilage evaluation. However, further hardware and software improvements are necessary to complete the translation of sodium MRI into a clinically feasible method for 3-T systems. This review is divided into three parts: (i) cartilage composition, pathology and treatment; (ii) sodium MRI; and (iii) clinical sodium MRI studies of cartilage with a focus on the evaluation of cartilage repair tissue and osteoarthritis.


Assuntos
Cartilagem Articular/patologia , Imageamento por Ressonância Magnética/métodos , Osteoartrite/diagnóstico , Sódio/metabolismo , Cicatrização , Animais , Humanos , Osteoartrite/patologia
6.
NMR Biomed ; 29(9): 1316-34, 2016 09.
Artigo em Inglês | MEDLINE | ID: mdl-25762432

RESUMO

Presently, three major MR vendors provide commercial 7-T units for clinical research under ethical permission, with the number of operating 7-T systems having increased to over 50. This rapid increase indicates the growing interest in ultrahigh-field MRI because of improved clinical results with regard to morphological as well as functional and metabolic capabilities. As the signal-to-noise ratio scales linearly with the field strength (B0 ) of the scanner, the most obvious application at 7 T is to obtain higher spatial resolution in the brain, musculoskeletal system and breast. Of specific clinical interest for neuro-applications is the cerebral cortex at 7 T, for the detection of changes in cortical structure as a sign of early dementia, as well as for the visualization of cortical microinfarcts and cortical plaques in multiple sclerosis. In the imaging of the hippocampus, even subfields of the internal hippocampal anatomy and pathology can be visualized with excellent resolution. The dynamic and static blood oxygenation level-dependent contrast increases linearly with the field strength, which significantly improves the pre-surgical evaluation of eloquent areas before tumor removal. Using susceptibility-weighted imaging, the plaque-vessel relationship and iron accumulation in multiple sclerosis can be visualized for the first time. Multi-nuclear clinical applications, such as sodium imaging for the evaluation of repair tissue quality after cartilage transplantation and (31) P spectroscopy for the differentiation between non-alcoholic benign liver disease and potentially progressive steatohepatitis, are only possible at ultrahigh fields. Although neuro- and musculoskeletal imaging have already demonstrated the clinical superiority of ultrahigh fields, whole-body clinical applications at 7 T are still limited, mainly because of the lack of suitable coils. The purpose of this article was therefore to review the clinical studies that have been performed thus far at 7 T, compared with 3 T, as well as those studies performed at 7 T that cannot be routinely performed at 3 T. Copyright © 2015 John Wiley & Sons, Ltd.


Assuntos
Aumento da Imagem/métodos , Imageamento por Ressonância Magnética/métodos , Espectroscopia de Ressonância Magnética/métodos , Imagem Molecular/métodos , Neuroimagem/métodos , Animais , Medicina Baseada em Evidências , Humanos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Campos Magnéticos , Doses de Radiação , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
7.
Eur Radiol ; 26(6): 1905-12, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26334512

RESUMO

OBJECTIVES: To assess the clinical relevance of T2 relaxation times, measured by 3D triple-echo steady-state (3D-TESS), in knee articular cartilage compared to conventional multi-echo spin-echo T2-mapping. METHODS: Thirteen volunteers and ten patients with focal cartilage lesions were included in this prospective study. All subjects underwent 3-Tesla MRI consisting of a multi-echo multi-slice spin-echo sequence (CPMG) as a reference method for T2 mapping, and 3D TESS with the same geometry settings, but variable acquisition times: standard (TESSs 4:35min) and quick (TESSq 2:05min). T2 values were compared in six different regions in the femoral and tibial cartilage using a Wilcoxon signed ranks test and the Pearson correlation coefficient (r). The local ethics committee approved this study, and all participants gave written informed consent. RESULTS: The mean quantitative T2 values measured by CPMG (mean: 46±9ms) in volunteers were significantly higher compared to those measured with TESS (mean: 31±5ms) in all regions. Both methods performed similarly in patients, but CPMG provided a slightly higher difference between lesions and native cartilage (CPMG: 90ms→61ms [31%],p=0.0125;TESS 32ms→24ms [24%],p=0.0839). CONCLUSIONS: 3D-TESS provides results similar to those of a conventional multi-echo spin-echo sequence with many benefits, such as shortening of total acquisition time and insensitivity to B1 and B0 changes. KEY POINTS: • 3D-TESS T 2 mapping provides clinically comparable results to CPMG in shorter scan-time. • Clinical and investigational studies may benefit from high temporal resolution of 3D-TESS. • 3D-TESS T 2 values are able to differentiate between healthy and damaged cartilage.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Imagem Ecoplanar/métodos , Articulação do Joelho/diagnóstico por imagem , Adulto , Feminino , Voluntários Saudáveis , Humanos , Masculino , Estudos Prospectivos , Reprodutibilidade dos Testes
8.
MAGMA ; 29(3): 513-21, 2016 Jun.
Artigo em Inglês | MEDLINE | ID: mdl-26965509

RESUMO

OBJECTIVE: The objective was to establish a gagCEST protocol that would enable robust and reproducible assessment of the glycosaminoglycan (GAG) content in knee cartilage at 7 T within a clinically feasible measurement time. MATERIALS AND METHODS: Ten young healthy volunteers (mean age 26 years, range 24-28, five males, five females) were examined on a 7 T MR system. Informed consent was obtained from all individual participants prior to enrollment into the study. Each volunteer was measured twice for reproducibility assessment. The examined knee was immobilized using a custom-made fixation device. For the gagCEST measurement, a prototype segmented 3-D RF-spoiled gradient-echo sequence with an improved saturation scheme employing adiabatic pulses was used in a scan time of 19 min. The asymmetry of the Z-spectra (MTRasym) in selected regions of interest in knee cartilage was calculated. Differences in MTRasym between different regions were evaluated using ANOVA and the Bonferroni corrected post hoc test. RESULTS: The improvement of the saturation scheme reduced the influence of field inhomogeneities, resulted in more uniform saturation, and allowed for good reproducibility in a reasonable measurement time (19 min), as demonstrated by an intraclass correlation coefficient of 0.77. Improved fixation helped to reduce motion artifacts. Whereas similar MTRasym values were found for weight-bearing and non-weight-bearing femoral cartilage, lower values were observed in the trochlear groove (p = 0.028), patellar (p = 0.015) and tibial cartilage (p < 0.001) when compared to non-weight-bearing femoral cartilage. CONCLUSION: Reasonable reproducibility and sensitivity to regional differences in GAG content suggests that the improved gagCEST protocol might be useful for assessing the biochemical changes in articular cartilage that are associated with early stages of cartilage degeneration.


Assuntos
Cartilagem Articular/diagnóstico por imagem , Glicosaminoglicanos/química , Articulação do Joelho/diagnóstico por imagem , Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Adulto , Artefatos , Cartilagem Articular/patologia , Feminino , Humanos , Processamento de Imagem Assistida por Computador/métodos , Joelho/patologia , Articulação do Joelho/patologia , Masculino , Movimento (Física) , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
9.
Knee Surg Sports Traumatol Arthrosc ; 24(5): 1601-9, 2016 May.
Artigo em Inglês | MEDLINE | ID: mdl-25429766

RESUMO

PURPOSE: Retropatellar cartilage lesions often occur in the course of recurrent patella dislocation. Aim of this study was to develop a more detailed method for examining cartilage tissue, in order to reduce patient discomfort and time of care. METHODS: For detailed diagnosing, a 7-T MRI of the knee joint and patella was performed in nine patients, with mean age of 26.4 years, after patella dislocation to measure the cartilage content in three different regions of interest of the patella. Axial sodium ((23)Na) images were derived from an optimized 3D GRE sequence on a 7-T MR scanner. Morphological cartilage grading was performed, and sodium signal-to-noise ratio (SNR) values were calculated. Mean global sodium values and SNR were compared between patients and volunteers. RESULTS: Two out of nine patients showed a maximum cartilage defect of International Cartilage Repair Society (ICRS) grade 3, three of grade 2, three of  grade 1, and one patient showed no cartilage defect. The mean SNR in sodium images for cartilage was 13.4 ± 2.5 in patients and 14.6 ± 3.7 in volunteers (n.s.). A significant negative correlation between age and global sodium SNR for cartilage was found in the medial facet (R = -0.512; R (2) = 0.26; p = 0.030). Mixed-model ANOVA yielded a marked decrease of the sodium SNR, with increasing grade of cartilage lesions (p < 0.001). CONCLUSIONS: Utilization of the (23)Na MR imaging will make earlier detection of alterations to the patella cartilage after dislocation possible and will help prevent subsequent disease due to start adequate therapy earlier in the rehabilitation process. LEVEL OF EVIDENCE: II.


Assuntos
Doenças das Cartilagens/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Articulação do Joelho/diagnóstico por imagem , Imageamento por Ressonância Magnética/métodos , Patela/diagnóstico por imagem , Luxação Patelar/diagnóstico por imagem , Adulto , Doenças das Cartilagens/etiologia , Doenças das Cartilagens/patologia , Doenças das Cartilagens/cirurgia , Cartilagem Articular/patologia , Cartilagem Articular/cirurgia , Feminino , Humanos , Articulação do Joelho/patologia , Articulação do Joelho/cirurgia , Masculino , Patela/patologia , Luxação Patelar/complicações , Luxação Patelar/patologia , Luxação Patelar/cirurgia , Compostos Radiofarmacêuticos , Compostos de Sódio , Adulto Jovem
10.
Magn Reson Med ; 71(3): 1015-23, 2014 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-23606167

RESUMO

PURPOSE: The goal of this study was to differentiate between normal, degenerative meniscus, and meniscal tears using monoexponentially and biexponentially calculated T2*. Meniscal disease, characterized by an altered collagen fiber matrix, might be detectable in vivo using quantitative T2* mapping. METHODS: A 3D Cartesian spoiled gradient echo technique was adapted to enable the use of a variable echo time approach in combination with a highly asymmetric readout. T2* was calculated monoexponentially and biexponentially using three- and five-parametric non-linear fits, respectively. RESULTS: From a total of 68 evaluated menisci, 48 were normal, 12 were degenerated, and eight had tears. Mean values for the short (T2*s) and long (T2*l) T2* components were as follows: in normal menisci, 0.82 ± 0.38/15.0 ± 5.4 ms, respectively; in degenerated menisci, 1.29 ± 0.53/19.97 ± 5.59 ms, respectively; and, in meniscal tears, 2.05 ± 0.73 and 26.83 ± 7.72 ms, respectively. Biexponentially fitted T2* demonstrated a greater ability to distinguish normal and degenerated menisci using receiver operating characteristic (ROC) analysis (higher area under curve as well as higher specificity and sensitivity). CONCLUSION: This study suggests that biexponential fitting, used for T2* calculation in the menisci, provides better results compared to monoexponential fitting. Observed changes in T2* result from the matrix reorganization in degenerative processes in the menisci, which affects the collagen fiber orientation, as well as content.


Assuntos
Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Traumatismos do Joelho/patologia , Meniscos Tibiais/patologia , Osteoartrite do Joelho/patologia , Lesões do Menisco Tibial , Adulto , Diagnóstico Diferencial , Feminino , Humanos , Aumento da Imagem/métodos , Imageamento por Ressonância Magnética , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
11.
Eur Radiol ; 24(2): 494-501, 2014 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-24081646

RESUMO

OBJECTIVE: To evaluate the feasibility of in vivo (23)Na imaging of the corticomedullary (23)Na gradient and to measure (23)Na transverse relaxation times (T2*) in human kidneys. METHODS: In this prospective, IRB-approved study, eight healthy volunteers (4 female, 4 male; mean age 29.4 ± 3.6 years) were examined on a 7-T whole-body MR system using a (23)Na-only spine-array coil. For morphological (23)Na-MRI, a 3D gradient echo (GRE) sequence with a variable echo time scheme (vTE) was used. T2* times were calculated using a multiecho 3D vTE-GRE approach. (23)Na signal-to-noise ratios (SNR) were given on a pixel-by-pixel basis for a 20-mm section from the cortex in the direction of the medulla. T2* maps were calculated by fitting the (23)Na signal decay monoexponentially on a pixel-by-pixel basis, using least squares fit. RESULTS: Mean corticomedullary (23)Na-SNR increased from the cortex (32.2 ± 5.6) towards the medulla (85.7 ± 16.0). The SNR increase ranged interindividually from 57.2% to 66.3%. Mean (23)Na-T2* relaxation times differed statistically significantly (P < 0.001) between the cortex (17.9 ± 0.8 ms) and medulla (20.6 ± 1.0 ms). CONCLUSION: The aim of this study was to evaluate the feasibility of in vivo (23)Na MRI of the corticomedullary (23)Na gradient and to measure the (23)Na T2* relaxation times of human kidneys at 7 T. KEY POINTS: • High field MR offers new insights into renal anatomy and physiology. • (23) Na MRI of healthy human kidneys is feasible at ultra-high field. • Renal (23) Na concentration increases from the cortex in the medullary pyramid direction. • In vivo measurements of renal (23) Na-T2* times are demonstrated at 7.0 T.


Assuntos
Imageamento Tridimensional/métodos , Rim/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Imagem Corporal Total/métodos , Adulto , Estudos de Viabilidade , Feminino , Voluntários Saudáveis , Humanos , Córtex Renal/anatomia & histologia , Medula Renal/anatomia & histologia , Análise dos Mínimos Quadrados , Masculino , Estudos Prospectivos , Sódio , Adulto Jovem
12.
Radiol Adv ; 1(1): umae005, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38855428

RESUMO

Background: Medial meniscus root tears often lead to knee osteoarthritis. The extent of meniscal tissue changes beyond the localized root tear is unknown. Purpose: To evaluate if 7 Tesla 3D T2*-mapping can detect intrasubstance meniscal degeneration in patients with arthroscopically verified medial meniscus posterior root tears (MMPRTs), and assess if tissue changes extend beyond the immediate site of the posterior root tear detected on surface examination by arthroscopy. Methods: In this prospective study we acquired 7 T knee MRIs from patients with MMPRTs and asymptomatic controls. Using a linear mixed model, we compared T2* values between patients and controls, and across different meniscal regions. Patients underwent arthroscopic assessment before MMPRT repair. Changes in pain levels before and after repair were calculated using Knee Injury & Osteoarthritis Outcome Score (KOOS). Pain changes and meniscal extrusion were correlated with T2* using Pearson correlation (r). Results: Twenty patients (mean age 53 ± 8; 16 females) demonstrated significantly higher T2* values across the medial meniscus (anterior horn, posterior body and posterior horn: all P < .001; anterior body: P = .007), and lateral meniscus anterior (P = .024) and posterior (P < .001) horns when compared to the corresponding regions in ten matched controls (mean age 53 ± 12; 8 females). Elevated T2* values were inversely correlated with the change in pain levels before and after repair. All patients had medial meniscal extrusion of ≥2 mm. Arthroscopy did not reveal surface abnormalities in 70% of patients (14 out of 20). Conclusions: Elevated T2* values across both medial and lateral menisci indicate that degenerative changes in patients with MMPRTs extend beyond the immediate vicinity of the posterior root tear. This suggests more widespread meniscal degeneration, often undetected by surface examinations in arthroscopy.

13.
J Magn Reson Imaging ; 38(1): 238-44, 2013 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-23239405

RESUMO

PURPOSE: To develop a coil configuration for high-resolution imaging of different regions of the hand and wrist at 7 T. MATERIALS AND METHODS: A quadrature bandpass birdcage and a 12-channel high density receive array were developed for imaging metacarpus and wrist. Workbench and magnetic resonance imaging (MRI) measurements were done to characterize the coil and obtain in vivo images. Electromagnetic simulations were performed to assess the uniformity of transmit profile and calculate the specific absorption rate (SAR). RESULTS: The results obtained show that the constructed transmit coil can be used in combination with receive arrays, without the need to retune the same. The developed wrist array was used to produce images of ultrahigh resolution (0.19 × 0.19 × 0.5 mm(3) ), revealing fine anatomical details. Simulations show that a near-uniform transmit profile is possible throughout the hand. No inhomogeneities were observed in the transmit profile, unlike a human head or abdomen at 7 T, due to the small volume of the hand and its low conductive regions. CONCLUSION: While transceive arrays are usually preferred at 7 T due to issues related to decrease in wavelength, it is shown in this study that with regard to hand-imaging optimized high-density receive arrays are a good solution to obtain images of extremely fine resolution of different regions.


Assuntos
Mãos/anatomia & histologia , Aumento da Imagem/instrumentação , Imageamento por Ressonância Magnética/instrumentação , Magnetismo/instrumentação , Transdutores , Punho/anatomia & histologia , Desenho de Equipamento , Análise de Falha de Equipamento , Humanos , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
14.
J Orthop Res ; 41(3): 663-673, 2023 03.
Artigo em Inglês | MEDLINE | ID: mdl-35716161

RESUMO

Juvenile osteochondritis dissecans (JOCD) is a pediatric orthopedic disorder that involves the articular-epiphyseal cartilage complex and underlying bone. Clinical disease is often characterized by the presence of radiographically apparent osteochondral flaps and fragments. The existence of early JOCD lesions (osteochondrosis latens [OCL] and osteochondrosis manifesta [OCM]) that precede the development of osteochondral flaps and fragments is also well recognized. However, identification of naturally occurring OCL lesions (confined to cartilage) using noninvasive imaging techniques has not yet been accomplished. We hypothesized that 10.5 T magnetic resonance imaging (MRI) can identify naturally occurring OCL lesions at predilection sites in intact joints of juvenile pigs. Unilateral elbows and knees (stifles) were harvested from three pigs aged 4, 8, and 12 weeks, and scanned in a 10.5 T MRI to obtain morphological 3D DESS images, and quantitative T2 and T1ρ relaxation time maps. Areas with increased T2 and T1ρ relaxation times in the articular-epiphyseal cartilage complex were identified in 1/3 distal femora and 3/3 distal humeri and were considered suspicious for OCL or OCM lesions. Histological assessment confirmed the presence of OCL or OCM lesions at each of these sites and failed to identify additional lesions. Histological findings included necrotic vascular profiles associated with areas of chondronecrosis either confined to the epiphyseal cartilage (OCL, 4- and 8-week-old specimens) or resulting in a delay in endochondral ossification (OCM, 12-week-old specimen). Future studies with clinical MR systems (≤7 T) are needed to determine whether these MRI methods are suitable for the in vivo diagnosis of early JOCD lesions in humans.


Assuntos
Osteocondrite Dissecante , Osteocondrose , Humanos , Criança , Suínos , Animais , Osteocondrose/patologia , Necrose , Imageamento por Ressonância Magnética , Imageamento Tridimensional
15.
Magn Reson Imaging ; 97: 91-101, 2023 04.
Artigo em Inglês | MEDLINE | ID: mdl-36610648

RESUMO

Degeneration of cartilage can be studied non-invasively with quantitative MRI. A promising parameter for detecting early osteoarthritis in articular cartilage is T1ρ, which can be tuned via the amplitude of the spin-lock pulse. By measuring T1ρ at several spin-lock amplitudes, the dispersion of T1ρ is obtained. The aim of this study is to find out if the dispersion contains diagnostically relevant information complementary to a T1ρ measurement at a single spin-lock amplitude. To this end, five differently acquired dispersion parameters are utilized; A, B, τc, T1ρ/T2, and R2 - R1ρ. An open dataset of an equine model of post-traumatic cartilage was utilized to assess the T1ρ dispersion parameters for the evaluation of cartilage degeneration. Firstly, the parameters were compared for their sensitivity in detecting degenerative changes. Secondly, the relationship of the dispersion parameters to histological and biomechanical reference parameters was studied. Parameters A, T1ρ/T2, and R2 - R1ρ were found to be sensitive to lesion-induced changes in the cartilage within sample. Strong correlations of several dispersion parameters with optical density, as well as with collagen fibril angle were found. Most of the dispersion parameters correlated strongly with individual T1ρ values. The results suggest that dispersion parameters can in some cases provide a more accurate description of the biochemical composition of cartilage as compared to conventional MRI parameters. However, in most cases the information given by the dispersion parameters is more of a refinement than complementary to conventional quantitative MRI.


Assuntos
Cartilagem Articular , Osteoartrite , Animais , Cavalos , Imageamento por Ressonância Magnética/métodos , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Osteoartrite/diagnóstico por imagem
16.
J Orthop Res ; 41(1): 150-160, 2023 01.
Artigo em Inglês | MEDLINE | ID: mdl-35430743

RESUMO

Juvenile osteochondritis dissecans (JOCD) is an orthopedic joint disorder of children and adolescents that can lead to premature osteoarthritis. Thirteen patients (mean age: 12.3 years, 4 females), 15 JOCD-affected and five contralateral healthy knees, that had a baseline and a follow-up magnetic resonance imaging (MRI) (mean interval of 8.9 months) and were treated nonoperatively during this interval were included. Retrospectively, patients were assigned to operative or nonoperative groups based on their electronic medical records. Volumetric mean T2 * values were calculated within regions of interest (progeny lesion, interface, parent bone) and region matched control bone in healthy contralateral knees and condyles. The normalized percentage difference of T2 * between baseline and follow up MRI in nonoperative patients significantly increased in progeny lesion (-47.8%, p < 0.001), parent bone (-13.9%, p < 0.001), and interface (-32.3%, p = 0.011), whereas the differences in operative patients were nonsignificant and below 11%. In nonoperative patients, the progeny lesion (p < 0.001) and interface T2 * values (p = 0.012) were significantly higher than control bone T2 * at baseline, but not at follow-up (p = 0.219, p = 1.000, respectively). In operative patients, the progeny lesion and interface T2 * values remained significantly elevated compared to the control bone both at baseline (p < 0.001, p < 0.001) and follow-up (p < 0.001, p < 0.001), respectively. Clinical Significance: Longitudinal T2 * mapping differentiated nonhealing from healing JOCD lesions following initial nonoperative treatment, which may assist in prognosis and improve the ability of surgeons to make recommendations regarding operative versus nonoperative treatment.


Assuntos
Imageamento por Ressonância Magnética , Criança , Humanos , Adolescente , Projetos Piloto , Estudos Retrospectivos
17.
J Orthop Res ; 41(7): 1449-1463, 2023 07.
Artigo em Inglês | MEDLINE | ID: mdl-36484124

RESUMO

Current clinical MRI of patients with juvenile osteochondritis dissecans (JOCD) is limited by the low reproducibility of lesion instability evaluation and inability to predict which lesions will heal after nonoperative treatment and which will later require surgery. The aim of this study is to verify the ability of apparent diffusion coefficient (ADC) to detect differences in lesion microstructure between different JOCD stages, treatment groups, and healthy, unaffected contralateral knees. Pediatric patients with JOCD received quantitative diffusion MRI between January 2016 and September 2020 in this prospective research study. A disease stage (I-IV) and stability of each JOCD lesion was evaluated. ADCs were calculated in progeny lesion, interface, parent bone, cartilage overlying lesion, control bone, and control cartilage regions. ADC differences were evaluated using linear mixed models with Bonferroni correction. Evaluated were 30 patients (mean age, 13 years; 21 males), with 40 JOCD-affected and 12 healthy knees. Nine patients received surgical treatment after MRI. Negative Spearman rank correlations were found between ADCs and JOCD stage in the progeny lesion (ρ = -0.572; p < 0.001), interface (ρ = -0.324; p = 0.041), and parent bone (ρ = -0.610; p < 0.001), demonstrating the sensitivity of ADC to microstructural differences in lesions at different JOCD stages. We observed a significant increase in the interface ADCs (p = 0.007) between operative (mean [95% CI] = 1.79 [1.56-2.01] × 10-3 mm2 /s) and nonoperative group (1.27 [0.98-1.57] × 10-3 mm2 /s). Quantitative diffusion MRI detects microstructural differences in lesions at different stages of JOCD progression towards healing and reveals differences between patients assigned for operative versus nonoperative treatment.


Assuntos
Cartilagem Articular , Osteocondrite Dissecante , Masculino , Humanos , Criança , Adolescente , Osteocondrite Dissecante/diagnóstico por imagem , Cartilagem Articular/diagnóstico por imagem , Cartilagem Articular/patologia , Reprodutibilidade dos Testes , Estudos Prospectivos , Articulação do Joelho/diagnóstico por imagem , Articulação do Joelho/patologia , Imageamento por Ressonância Magnética , Imagem de Difusão por Ressonância Magnética
18.
Radiology ; 262(1): 199-205, 2012 Jan.
Artigo em Inglês | MEDLINE | ID: mdl-22056685

RESUMO

PURPOSE: To investigate the feasibility of sodium magnetic resonance (MR) imaging in the diagnosis of Achilles tendinopathy. MATERIALS AND METHODS: Institutional review board approval and written informed consent were obtained. Twenty healthy volunteers and eight patients with Achilles tendinopathy were examined by using a 7-T whole-body MR imager with a 15-channel sodium knee coil. The sodium signal-to-noise ratio (SNR) from each region, as well as from the whole Achilles tendon, was compared between patients and healthy control subjects. The changes in SNR were assessed with a two-tailed unpaired t test in three regions of the Achilles tendon: the insertion area, the middle portion, and the muscle-tendon junction. P values less than .05 were considered to indicate a statistically significant difference. To validate a relationship between the sodium SNR and the glycosaminoglycan content in tendon, five cadaver ankles were examined with MR imaging and immunohistologically. The Pearson correlation coefficient between sodium SNR and glycosaminoglycan content was calculated. RESULTS: Significant differences (P < .05) in the mean sodium SNR of healthy control subjects (mean SNR, 4.9 ± 2.1 [standard deviation]) and patients with chronic Achilles tendinopathy (mean SNR, 9.3 ± 2.3) were observed. Similar results were found at the insertion (mean SNR in control subjects, 6.7 ± 2.3; mean SNR in patients, 12.3 ± 4.5; P < .05) and the midportion (mean SNR in control subjects, 5.1 ± 1.9; mean SNR in patients, 9.4 ± 3.0; P < .05) of the Achilles tendon. At the muscle-tendon junction, the sodium SNR difference between control subjects and patients was small but still bellow the significance level (P = .0137). The increase in sodium SNR was observed in all regions independently of the location of morphologic findings. The Pearson correlation coefficient between sodium SNR and glycosaminoglycan content was 0.71. CONCLUSION: Sodium MR imaging may allow detection of the proteoglycan content increase in Achilles tendinopathy and thus identify the biochemical changes in the early stages of tendinopathy.


Assuntos
Tendão do Calcâneo/patologia , Imageamento por Ressonância Magnética/métodos , Sódio/metabolismo , Tendinopatia/diagnóstico , Adulto , Cadáver , Estudos de Casos e Controles , Estudos de Viabilidade , Feminino , Humanos , Masculino , Valor Preditivo dos Testes , Razão Sinal-Ruído , Tendinopatia/patologia
19.
Radiology ; 265(2): 555-64, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22923712

RESUMO

PURPOSE: To compare sodium imaging of lumbar intervertebral disks in asymptomatic volunteers at 7-T magnetic resonance (MR) imaging with quantitative T2 mapping and morphologic scoring at 3 T. MATERIALS AND METHODS: Following ethical board approval and informed consent, the L2-3 to L5-S1 disks were examined in 10 asymptomatic volunteers (nine men, one woman; mean age, 30 years; range, 23-43 years). At 7 T, normalized sodium signal-to-noise ratios were calculated, by using region-of-interest analysis. At 3 T, T2 mapping was performed with a multiecho spin-echo sequence (repetition time msec/echo times msec, 1500/24, 36, 48, 60, 72, 84, 96, 108, 120, 132, 144, 156). T2 values were calculated over the nucleus, with a pixelwise, monoexponential nonnegative least-squares-fit analysis. Morphologic grading according to a modified Pfirrmann score was assessed independently by three experienced musculoskeletal radiologists, and Pearson correlation analysis of the covariates was performed. RESULTS: The mean normalized sodium signal intensity was 275.5±115.4 (standard deviation). The T2 mapping showed a mean value of 89.8 msec±19.34. The median modified Pfirrmann score was 2b (90% had score≤3c). The Pearson correlation coefficient showed a cubic function between sodium imaging and the modified Pfirrmann score, a moderate inverse correlation between T2 mapping and the modified Pfirrmann score (r=-0.62), and no correlation between sodium imaging and T2 mapping (r=0.06). CONCLUSION: The results suggest that MR imaging of the intervertebral disk, using sodium imaging and T2 mapping, can help characterize different component changes and that both of these methods are to some degree related to the Pfirrmann score.


Assuntos
Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Disco Intervertebral/anatomia & histologia , Vértebras Lombares/anatomia & histologia , Imageamento por Ressonância Magnética/métodos , Adulto , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Reprodutibilidade dos Testes , Sensibilidade e Especificidade , Estatística como Assunto , Adulto Jovem
20.
Magn Reson Med ; 68(5): 1607-13, 2012 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-22851221

RESUMO

The aim of this study was to investigate T2* in the Achilles tendon (AT), in vivo, using a three-dimensional ultrashort time echo (3D-UTE) sequence, to compare field strength differences (3 and 7 T) and to evaluate a regional variation of T2* in healthy and pathologic tendon. Ten volunteers with no history of pain in the AT and five patients with chronic Achilles tendinopathy were recruited. 3D-UTE images were measured with the following echo times, at echo time = [0.07, 0.2, 0.33, 0.46, 0.59, 0.74, 1.0, 1.5, 2.0, 4.0, 6.0, and 9.0 ms]. T2* values in the AT were calculated by fitting the signal decay to biexponential function. Comparing volunteers between 3 and 7 T, short component T(2s)* was 0.71 ± 0.17 ms and 0.34 ± 0.09 ms (P < 0.05); bulk long component T(2l)* was 12.85 ± 1.87 ms and 10.28 ± 2.28 ms (P < 0.05). In patients at 7 T, bulk T(2s)* was 0.53 ± 0.17 ms (P = 0.045, compared to volunteers), T(2l)* was 11.49 ± 4.28 ms (P = 0.99, compared to volunteers). The results of this study suggest that the regional variability of AT can be quantified by T2* in in vivo conditions. Advanced quantitative imaging of the human AT using a 3D-UTE sequence may provide additional information to standard clinical imaging. Finally, as the preliminary patient data suggest, T(2s)* may be a promising marker for the diagnosis of pathological changes in the AT.


Assuntos
Tendão do Calcâneo/patologia , Algoritmos , Interpretação de Imagem Assistida por Computador/métodos , Imageamento Tridimensional/métodos , Tendinopatia/patologia , Tendão do Calcâneo/citologia , Adulto , Doença Crônica , Feminino , Humanos , Aumento da Imagem/métodos , Masculino , Projetos Piloto , Valores de Referência , Reprodutibilidade dos Testes , Sensibilidade e Especificidade
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA