Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
Ann Bot ; 130(7): 965-980, 2022 12 31.
Artigo em Inglês | MEDLINE | ID: mdl-36282948

RESUMO

BACKGROUND AND AIMS: Although plastid genes are widely used in phylogenetic studies, signals of positive selection have been scarcely investigated in the grape family. The plastomes from 91 accessions of Vitaceae were examined to understand the extent to which positive selection is present and to identify which genes are involved. Moreover, the changes through time of genes under episodic positive selection were investigated and the hypothesis of an adaptive process following the Cretaceous-Palaeogene (K/Pg) transition about 66 million years ago was tested. METHODS: Different codon-substitution models were used to assess pervasive and episodic positive selection events on 70 candidate plastid genes. Divergence times between lineages were estimated and stochastic character mapping analysis was used to simulate variation over time of the genes found to be under episodic positive selection. KEY RESULTS: A total of 20 plastid genes (29 %) showed positive selection. Among them, 14 genes showed pervasive signatures of positive selection and nine genes showed episodic signatures of positive selection. In particular, four of the nine genes (psbK, rpl20, rpoB, rps11) exhibited a similar pattern showing an increase in the rate of variation close to the K/Pg transition. CONCLUSION: Multiple analyses have shown that the grape family has experienced ancient and recent positive selection events and that the targeted genes are involved in essential functions such as photosynthesis, self-replication and metabolism. Our results are consistent with the idea that the K/Pg transition has favoured an increased rate of change in some genes. Intense environmental perturbations have influenced the rapid diversification of certain lineages, and new mutations arising on some plastid genes may have been fixed by natural selection over the course of many generations.


Assuntos
Magnoliopsida , Vitis , Filogenia , Vitis/genética , Mutação , Códon , Evolução Molecular
2.
Curr Genet ; 66(1): 123-140, 2020 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-31201544

RESUMO

The family Vitaceae includes the domesticated grapevine (Vitis vinifera), one of the most economically important crops in the world. Despite the importance of Vitaceae, there is still considerable controversy surrounding their phylogenetic relationships and evolutionary timescales. Moreover, variation in rates of molecular evolution among Vitaceae remains mostly unexplored. The present research aims to fill these knowledge gaps through the analysis of plastome sequences. Thirteen newly sequenced grape plastomes are presented and their phylogenetic relationships examined. Divergence times and absolute substitution rates are inferred under different molecular clocks by the analysis of 95 non-coding plastid regions and 43 representative accessions of the major lineages of Vitaceae. Furthermore, the phylogenetic informativeness of non-coding plastid regions is investigated. We find strong evidence in favor of the random local clock model and rate heterogeneity within Vitaceae. Substitution rates decelerate in Ampelocissus, Ampelopsis, Nekemias, Parthenocissus, Rhoicissus, and Vitis, with genus Vitis showing the lowest values up to a minimum of ~ 4.65 × 10-11 s/s/y. We suggest that liana-like species of Vitaceae evolve slower than erect growth habit plants and we invoke the "rate of mitosis hypothesis" to explain the observed pattern of the substitution rates. We identify a reduced set of 20 non-coding regions able to accurately reconstruct the phylogeny of Vitaceae and we provide a detailed description of all 152 non-coding regions identified in the plastomes of subg. Vitis. These polymorphic regions will find their applications in phylogenetics, phylogeography, and population genetics as well in grapes identification through DNA barcoding techniques.


Assuntos
Plastídeos/genética , Vitis/fisiologia , Evolução Biológica , Biologia Computacional/métodos , Evolução Molecular , Biblioteca Genômica , Sequenciamento de Nucleotídeos em Larga Escala , Filogenia , Vitis/classificação
3.
Mol Phylogenet Evol ; 62(2): 736-47, 2012 Feb.
Artigo em Inglês | MEDLINE | ID: mdl-22138159

RESUMO

Wild grapes are woody climbers, found mostly in temperate regions of the northern hemisphere, comprising the genus Vitis. Despite its importance, the evolutionary history of Vitis is still contentious. Past studies have led to conflicting hypotheses about the phylogeny, speciation events, and biogeographic history of the genus. Here we investigate the evolutionary history of Vitis using data from four chloroplast spacers (trnH-psbA, trnK-rps16, trnF-nahJ, and rpl32-trnL) and the nuclear gene RPB2-I, and we explore mechanisms that could have shaped the observed distribution of current species. Maximum likelihood and Bayesian analyses provided similar results, strongly supporting the presence of two subgenera and suggesting a species clustering within subgenus Vitis that mainly mirrors the disjunction between the Old and New World. Vitis vinifera subsp. sylvestris was found to be sister to the Asian species while three major clades were found in the American species. A network approach confirmed the main geographic groups and highlighted different chloroplast haplotype patterns between Asian and American species. Molecular dating analysis provided the time boundaries to discuss our results. Our study shows wild grape diversification to be a continuous and complex process that concerned the Tertiary as well as the Quaternary, most likely involving both geographical and climatic forces. Local variations in extent and timing of these forces were discussed based on observed differences between groups. In the context of the Tertiary-Quaternary debate, we provide evidence in favor of the "continuous hypothesis" to explain present diversity. Finally, two directions for future research are highlighted: (i) was the earliest grape American or Asian? and (ii) are all modern grape species real?


Assuntos
DNA de Cloroplastos/genética , DNA Intergênico/genética , Especiação Genética , Filogenia , RNA Polimerase II/genética , Vitis/genética , Ásia , Teorema de Bayes , Evolução Biológica , Núcleo Celular/genética , Cloroplastos/genética , Haplótipos , Funções Verossimilhança , América do Norte , Filogeografia , Análise de Sequência de DNA , América do Sul , Vitis/classificação
4.
Front Plant Sci ; 10: 1814, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-32117355

RESUMO

Natural hybridization and introgression are central evolutionary processes in grape genus (Vitis). On the other hand, the interspecific relationships among grapes, the directionality of the inferred admixture events and the parents of hybrids are not yet completely clarified. The grapes are economically important crops characterized by tendrils used to climb on the trees and the fruits harvested by humans especially for the consumption or to produce wines and liquors. The American grapes (ca. 30 species) are recognized as an important resource because they show biotic and abiotic resistances. We analyzed 3,885 genome-wide SNPs from 31 American Vitis species using the TreeMix software combined with the f3 and f4 tests. This approach allowed us to infer phylogenetic relationships and to explore the natural admixture among taxa. Our results confirmed the existence of all hybrid species recognized in literature (V. x champinii, V. x doaniana, V. x novae-angliae, and V. x slavinii), identifying their most likely parent species and provided evidence of additional gene flows between distantly related species. We discuss our results to elucidate the origin of American wild grapes, demonstrating that admixture events have ancient origins. We observe that gene flows have involved taxa currently spread through the southern regions of North America. Consequently, we propose that glacial cycles could have triggered the contact between interfertile taxa promoting local hybridization events. We conclude by discussing the phylogenetic implications of our findings and showing that TreeMix can provide novel insights into the evolutionary history of grapes.

5.
PLoS One ; 11(11): e0166983, 2016.
Artigo em Inglês | MEDLINE | ID: mdl-27870888

RESUMO

Quaternary glaciations and mostly last glacial maximum have shaped the contemporary distribution of many species in the Alps. However, in the Maritime and Ligurian Alps a more complex picture is suggested by the presence of many Tertiary paleoendemisms and by the divergence time between lineages in one endemic species predating the Late Pleistocene glaciation. The low number of endemic species studied limits the understanding of the processes that took place within this region. We used species distribution models and phylogeographical methods to infer glacial refugia and to reconstruct the phylogeographical pattern of Silene cordifolia All. and Viola argenteria Moraldo & Forneris. The predicted suitable area for last glacial maximum roughly fitted current known distribution. Our results suggest that separation of the major clades predates the last glacial maximum and the following repeated glacial and interglacial periods probably drove differentiations. The complex phylogeographical pattern observed in the study species suggests that both populations and genotypes extinction was minimal during the last glacial maximum, probably due to the low impact of glaciations and to topographic complexity in this area. This study underlines the importance of cumulative effect of previous glacial cycles in shaping the genetic structure of plant species in Maritime and Ligurian Alps, as expected for a Mediterranean mountain region more than for an Alpine region.


Assuntos
Camada de Gelo , Silene/genética , Viola/genética , Filogeografia , Silene/crescimento & desenvolvimento , Viola/crescimento & desenvolvimento
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA