Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Mais filtros

Base de dados
Tipo de documento
Intervalo de ano de publicação
1.
J Nutr Health Aging ; 28(5): 100212, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38489995

RESUMO

Iron plays a crucial role in many physiological processes, including oxygen transport, bioenergetics, and immune function. Iron is assimilated from food and also recycled from senescent red blood cells. Iron exists in two dietary forms: heme (animal based) and non-heme (mostly plant based). The body uses iron for metabolic purposes, and stores the excess mainly in splenic and hepatic macrophages. Physiologically, iron excretion in humans is inefficient and not highly regulated, so regulation of intestinal absorption maintains iron homeostasis. Iron losses occur at a steady rate via turnover of the intestinal epithelium, blood loss, and exfoliation of dead skin cells, but overall iron homeostasis is tightly controlled at cellular and systemic levels. Aging can have a profound impact on iron homeostasis and induce a dyshomeostasis where iron deficiency or overload (sometimes both simultaneously) can occur, potentially leading to several disorders and pathologies. To maintain physiologically balanced iron levels, reduce risk of disease, and promote healthy aging, it is advisable for older adults to follow recommended daily intake guidelines and periodically assess iron levels. Clinicians can evaluate body iron status using different techniques but selecting an assessment method primarily depends on the condition being examined. This review provides a comprehensive overview of the forms, sources, and metabolism of dietary iron, associated disorders of iron dyshomeostasis, assessment of iron levels in older adults, and nutritional guidelines and strategies to maintain iron balance in older adults.


Assuntos
Homeostase , Ferro da Dieta , Ferro , Necessidades Nutricionais , Humanos , Homeostase/fisiologia , Idoso , Ferro da Dieta/administração & dosagem , Ferro/metabolismo , Envelhecimento/fisiologia , Estado Nutricional , Anemia Ferropriva/prevenção & controle , Deficiências de Ferro , Sobrecarga de Ferro
2.
Exp Gerontol ; 184: 112333, 2023 12.
Artigo em Inglês | MEDLINE | ID: mdl-37993077

RESUMO

By definition, aging is a natural, gradual and continuous process. On the other hand, frailty reflects the increase in vulnerability to stressors and shortens the time without disease (health span) while longevity refers to the length of life (lifespan). The average life expectancy has significantly increased during the last few decades. A longer lifespan has been accompanied by an increase in frailty and decreased independence in older adults, with major differences existing between men and women. For example, women tend to live longer than men but also experience higher rates of frailty and disability. Sex differences prevent optimization of lifestyle interventions and therapies to effectively prevent frailty. Sex differences in frailty and aging are rooted in a complex interplay between uncontrollable (genetic, epigenetic, physiological), and controllable factors (psychosocial and lifestyle factors). Thus, understanding the underlying causes of sex differences in frailty and aging is essential for developing personalized interventions to promote healthy aging and improve quality of life in older men and women. In this review, we have discussed the key contributors and knowledge gaps related to sex differences in aging and frailty.


Assuntos
Fragilidade , Humanos , Feminino , Masculino , Idoso , Qualidade de Vida , Caracteres Sexuais , Idoso Fragilizado , Envelhecimento
3.
Ageing Res Rev ; 72: 101510, 2021 12.
Artigo em Inglês | MEDLINE | ID: mdl-34767974

RESUMO

Iron is indispensable for normal body functions across species because of its critical roles in red blood cell function and many essential proteins and enzymes required for numerous physiological processes. Regulation of iron homeostasis is an intricate process involving multiple modulators at the systemic, cellular, and molecular levels. Interestingly, emerging evidence has demonstrated that many modulators of iron homeostasis contribute to organismal aging and longevity. On the other hand, the age-related dysregulation of iron homeostasis is often associated with multiple age-related pathologies including bone resorption and neurodegenerative diseases such as Alzheimer's disease. Thus, a thorough understanding on the interconnections between systemic and cellular iron balance and organismal aging may help decipher the etiologies of multiple age-related diseases, which could ultimately lead to developing therapeutic strategies to delay aging and treat various age-related diseases. Here we present the current understanding on the mechanisms of iron homeostasis. We also discuss the impacts of aging on iron homeostatic processes and how dysregulated iron metabolism may affect aging and organismal longevity.


Assuntos
Envelhecimento , Doenças Neurodegenerativas , Homeostase , Humanos , Ferro , Longevidade
4.
Toxicol Sci ; 169(1): 108-121, 2019 05 01.
Artigo em Inglês | MEDLINE | ID: mdl-30815697

RESUMO

Arsenic exposure is a worldwide health concern associated with an increased risk of skin, lung, and bladder cancer but arsenic trioxide (AsIII) is also an effective chemotherapeutic agent. The current use of AsIII in chemotherapy is limited to acute promyelocytic leukemia (APL). However, AsIII was suggested as a potential therapy for other cancer types including chronic myeloid leukemia (CML), especially when combined with other drugs. Here, we carried out a genome-wide CRISPR-based approach to identify modulators of AsIII toxicity in K562, a human CML cell line. We found that disruption of KEAP1, the inhibitory partner of the key antioxidant transcription factor Nrf2, or TXNDC17, a thioredoxin-like protein, markedly increased AsIII tolerance. Loss of the water channel AQP3, the zinc transporter ZNT1 and its regulator MTF1 also enhanced tolerance to AsIII whereas loss of the multidrug resistance protein ABCC1 increased sensitivity to AsIII. Remarkably, disruption of any of multiple genes, EEFSEC, SECISBP2, SEPHS2, SEPSECS, and PSTK, encoding proteins involved in selenocysteine metabolism increased resistance to AsIII. Our data suggest a model in which an intracellular interaction between selenium and AsIII may impact intracellular AsIII levels and toxicity. Together this work revealed a suite of cellular components/processes which modulate the toxicity of AsIII in CML cells. Targeting such processes simultaneously with AsIII treatment could potentiate AsIII in CML therapy.


Assuntos
Antineoplásicos/farmacologia , Trióxido de Arsênio/farmacologia , Perfilação da Expressão Gênica , Leucemia Mielogênica Crônica BCR-ABL Positiva/tratamento farmacológico , Sistemas CRISPR-Cas , Sobrevivência Celular/efeitos dos fármacos , Relação Dose-Resposta a Droga , Edição de Genes , Regulação Leucêmica da Expressão Gênica , Células HEK293 , Humanos , Células K562 , Leucemia Mielogênica Crônica BCR-ABL Positiva/genética , Leucemia Mielogênica Crônica BCR-ABL Positiva/metabolismo , Leucemia Mielogênica Crônica BCR-ABL Positiva/patologia , Transdução de Sinais , Selenito de Sódio/farmacologia , Fatores de Tempo , Transcriptoma
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA