RESUMO
Background/Objectives: This study investigates the chemical composition, antioxidant, antibacterial, and hemolytic properties of ylang-ylang (Cananga odorata) essential oil, with a focus on its potential therapeutic applications for dermatological diseases and the importance of transforming such bioactive properties into a stable, safe, and effective formulation. Methods/Rsults: Essential oils were extracted from flowers harvested in northern Grande Comore using hydro distillation at three different distillation times to examine the impact on yield and quality. Gas chromatographic analysis identified a complex mixture of compounds, including linalool, geranyl acetate, and benzyl benzoate. Antioxidant activity was assessed using DPPH, FRAP, TAC, and beta-carotene bleaching inhibition assays, revealing significant radical scavenging capabilities, with DPPH IC50 varying between 1.57 and 3.5 mg/mL. Antibacterial activity was tested against Escherichia coli, Staphylococcus aureus, Bacillus subtilis, and Pseudomonas aeruginosa, showing promising inhibition zones and minimum inhibitory concentrations. Hemolytic tests indicated varying degrees of red blood cell damage, emphasizing the need for careful concentration management in therapeutic applications. Molecular docking studies highlighted potential therapeutic targets for dermatological conditions, identifying high binding affinities for specific compounds against proteins involved in acne, eczema, and psoriasis. Conclusions: This comprehensive analysis underscores the potential of ylang-ylang essential oil (YEOs) as a natural alternative for antimicrobial treatments and dermatological applications, with its success dependent on optimized extraction methods and precise formulation to reduce cytotoxic effects. A formulation approach is crucial to ensure controlled release, improve bioavailability, and minimize skin irritation.
RESUMO
Origanum grosii (L.) and Thymus pallidus (L.) are medicinal plants recognized for their uses in traditional medicine. In this context, the aim of this article is to highlight the results of a phytochemical analysis (HPLC), with particular emphasis on the antioxidant (DPPH, TAC, and FRAP), analgesic, anti-inflammatory, haemagglutinin-test-related, and hemolytic activities of the total extracts of these plants. Phytochemical analysis via HPLC revealed that licoflavone C (30%) is the main compound in Origanum grosii, while hesperidin (43%) is found in T. pallidus. Evaluation of the antioxidant capacity of Origanum grosii and Thymus pallidus using the DPPH, TAC, and FRAP methods revealed an IC50 of the order of 0.085 mg/mL and 0.146 mg/mL, an EC50 of the order of 0.167 mg/mL and 0.185 mg/mL, and a total antioxidant capacity of between 750 mg EQ/g and 900 mg EQ/g, respectively. Analgesic evaluations revealed writhes inhibition of the order of 97.83% for O. grosii and 90% for T. pallidus. In addition, both plant extracts showed limited hemolytic activity, not exceeding 30% at a concentration of 100 mg/mL. Evaluation of the anti-inflammatory potential showed edema inhibition of the order of 94% (800 mg/kg) for O. grosii and 86% (800 mg/kg) for T. pallidus. These results highlight the potential applications of these extracts in pharmacological research.
RESUMO
The study aimed at investigating the phytochemical composition, antioxidant and antibacterial activities of essential oils (EOs) of Origanum grossii and Thymus pallidus. The selection of these plants for the study was driven by a comprehensive survey conducted in the Ribat Elkheir region of Morocco, where these plants are widely utilized. The results reflect the valorization of these plants based on the findings of the regional survey. The GC-MS phytochemical analysis revealed that the main constituents of the essential oil were carvacrol and thymol for O. grossii and T. pallidus respectively. Quantitative assays demonstrated that O. grossii exhibited higher levels of polyphenols (0.136 mg AGE/mg EO) and flavonoids (0.207 mg QE/mg EO) compared to T. pallidus. The DPPH assay indicated that O. grossii EOs possessed approximately twice the antiradical activity of T. pallidus, with IC50 values of approximately 0.073 mg/mL and 0.131 mg/mL, respectively. The antibacterial activity tests showed that both essential oils exhibited significant inhibition zones ranging from 26 to 42 mm against all tested bacterial strains. The MIC values varied among the bacteria, generally falling within the range of 0.31 to 2.44 µg/mL, demonstrating the potency of the EOs to serve as antibacterial. Molecular docking revealed that O. grossii and T. pallidus essential oils interact with antibacterial and antioxidant proteins (1AJ6 and 6QME). Key compounds in O. grossii include p-cymene, eucalyptol, and carvacrol, while T. pallidus contains potent chemicals like p-cymene, ɤ-maaliene, valencene, α-terpinene, caryophyllene, himachalene, and thymol. Notably, the most potent chemicals in Origanum grossii are p-cymene, eucalyptol, and carvacrol, while the most potent chemicals in Thymus pallidus are p-cymene, α-terpinene, and thymol. These findings suggest that these plant EOs could be used to develop new natural products with antibacterial and antioxidant activity.